将金属有机骨架材料和水的混合物作为工作介质置于密闭容器中,形成基于金属有机骨架材料的分子弹簧隔振器;当隔振器受到外部载荷时,水分子在外压作用下侵入和逸出金属有机骨架材料的疏水微孔,实现能量的储存与释放。通过微观力学平衡和宏观体积变化关系模拟了水分子大量侵入金属有机骨架材料微孔的过程,推导了隔振器在受力过程的力位移关系,采用准静态试验验证推导的力学模型,通过仿真和试验分析隔振器性能的影响因素。结果表明:理论与试验结果一致性较好,基于金属有机骨架材料的分子弹簧隔振器表现出高-低-高的分段刚度特性,金属有机骨架材料的最小接触角、最大孔径、钴配比和孔容积等参数均会对隔振器的阶段Ⅱ产生影响,调整这些参数可以灵活调节隔振器的性能。
Abstract
The mixture of metal organic framework material and water was placed in a closed container as the working medium to form molecular spring isolator based on metal organic framework material. When the isolator is subjected to external load, water invades and escapes from the hydrophobic micropores of the metal-organic framework material under external pressure, realizing the storage and release of energy. The process of water molecules invading micropores of metal-organic framework material was simulated by the relationship between micromechanical equilibrium and macroscopic volume change. The force displacement relationship of vibration isolator was deduced during the loading process. The mechanical model was verified by quasi-static test, The influence factors of the performance of the isolator were analyzed by simulation and experiment. The results show that the theoretical and experimental results are in good agreement, and the molecular spring isolator based on metal-organic framework material shows the characteristics of high-low-high segmental stiffness, The minimum contact angle, maximum pore diameter, cobalt ratio and pore volume of the metal organic framework material will have an impact on the stage II of the vibration isolator. Adjusting these parameters can flexibly adjust the performance of the vibration isolator.
关键词
金属有机骨架材料 /
分子弹簧 /
分段刚度 /
隔振
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] C-V Suciu, Iwatsubo T, Deki S. Investigation of a colloidal damper[J]. Journal of Colloid and Interface Science, 2003, 259(1): 62-80.
[2] A-Y Fadeev, Eroshenko V-A. Study of Penetration of Water into Hydrophobized Porous Silicas[J]. J Colloid Interface Sci, 1997, 187(2): 275-282.
[3] R Sappey, Vincent E, Ocio M, et al. Pure silica chabazite molecular spring: a structural study on water intrusion-extrusion processes.[J]. Journal of Physical Chemistry B, 2008, 112(24): 7257-7266.
[4] V Eroshenko, Regis Robert-Charles, Soulard M, et al. Energetics: A New Field of Applications for Hydrophobic Zeolites[J]. Journal of the American Chemical Society, 2001, 123(33): 8129-8130.
[5] M Soulard, Patarin J, Eroshenko V, et al. Molecular spring or bumper: A new application for hydrophobic zeolitic materials[J]. Studies in surface science and catalysis, 2004, 154(04): 1830-1837.
[6] 余慕春,陈前,高雪,等. 分子弹簧的隔振机理与力学性能研究[J]. 力学学报, 2014, 46(04): 553-560.
YU Muchun,CHEN Qian,GAO Xue,et al Study on Vibration Isolation Mechanism and Mechanical Properties of Molecular Springs [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(04): 553-560. (in Chinese)
[7] 杨岳,关成立,曾取,等. 金属有机骨架材料MOFs的结构及合成研究[J]. 化工技术与开发, 2021, 50(04): 18-20.
YANG Yue, GUAN Shengli, ZENG Qu, et al Study on structure and synthesis of metal organic framework materials MOFs [J] Chemical technology and development, 2021, 50 (04): 18-20(in Chinese)
[8] 张福田. 分子界面化学基础. 上海:上海科学技术文献出版社,2006
(ZHAHG Futian. Fundamentals of Molecular Interface Chemistry. Shanghai: Shanghai Scientific and Technological Literature Press, 2006 (in Chinese)).
[9] L Tzanis, Trzpit M, Soulard M, et al. High pressure water intrusion investigation of pure silica 1D channel AFI, MTW and TON-type zeolites[J]. Microporous and Mesoporous Materials, 2011, 146(1–3): 119-126.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}