汽车零部件产品常被采用堆垛形式的物流器具运输以避免损伤。本文应用随机振动实验方法,分析三种不同振动等级下,堆垛型钢质物流器具的振动损伤。进而,基于物流器具—装载物—夹具相互作用关系,建立了全景天窗运输器具的有限元模型,研究了平稳高斯随机振动下该器具的疲劳响应,获得了关键位置变形和等效应力,预测了器具的疲劳寿命。研究结果表明:有限元分析得到的共振频率与随机振动实验结果相差3.4%;器具振动响应主要受低阶共振频率影响,最大应力集中在堆垛柱与托盘连接处;上层装载物响应加速度1.42g明显大于下层0.79g,而同处于上层的装载物响应加速度差别小于1.7%;上下层堆垛柱响应加速度分别为0.82g和0.79g,差别不明显。上述方法可模拟运输过程中汽车物流器具振动疲劳及装载物易损点,可为汽车物流器具设计提供一定参考。
Abstract
Auto parts products are often transported by logistics equipment in the form of stacking to avoid damage. In this paper, the random vibration experiment method is used to analyze the vibration damage of stacking steel logistics bins under three different vibration levels. Then, based on the interaction relationship between logistics bins, load and fixture, the explicit finite element model of panoramic skylight transportation equipment is established. The fatigue response of the equipment under stationary Gaussian random vibration is studied. The deformation and equivalent stress at the key position are obtained, and the fatigue life of the equipment is predicted. The results show that the resonance frequency obtained by finite element analysis is 3.4% different from that of random vibration experiment; The vibration response of the bin is mainly affected by the low-order resonance frequency, and the maximum stress is concentrated at the connection between the stacking column and the pallet; The response acceleration of the upper load 1.42g is significantly higher than that of the lower load 0.79g, while the difference between the response acceleration of the same upper load is less than 1.7%; The response accelerations of the upper and lower stacking columns are 0.82g and 0.79g respectively, and the difference is not obvious. The above method can simulate the vibration fatigue of automobile logistics equipment and the vulnerable points of loads in the process of transportation, and can provide a certain reference for the design of automobile logistics equipment.
关键词
物流器具 /
随机振动 /
疲劳寿命 /
有限元法 /
堆垛
{{custom_keyword}} /
Key words
logistics bins /
random vibration /
fatigue life /
finite element analysis /
stacking
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王志伟,房树盖. 不同谱型激励下包装件动态响应研究[J]. 振动与冲击, 2019.
WANG Zhi-wei, FANG Shu-gai. Dynamic response of packaging under different spectral excitation[J]. Journal of Vibration and Shock, 2019.
[2] Park J, Choi S, Jung H M. Measurement and analysis of vibration levels for truck transport environment in korea[J]. Applied Sciences , 2020, 10(19): 6754.
[3] Chonhenchob B V, Singh S P, Singh JJ, et al. Measurement and analysis of truck and rail vibration levels in thailand[J]. Packaging Technology and Science: An International Journal, 2010, 23(2): 91-100.
[4] 秦璐,丁毅,苏杰. 基于ANSYS Workbench的路由器风扇组包装的包装动力学应用研究[J].包装工程, 2013, 34(13): 56-58.
QIN Lu, DING Yi, SU Jie. Research on packaging dynamics application of router fan pack packaging based on ANSYS Workbench[J]. Journal of Packaging Engineering, 2013, 34(13): 56-58.
[5] 王志伟,林深伟. 随机振动下产品包装件动态响应的实验研究和有限元分析[J]. 振动与冲击, 2017, 36(13): 223-229.
WANG Zhi-wei, LIN Shen-wei. Experimental study and finite element analysis of dynamic response of product packaging under random vibration[J]. Journal of Vibration and Shock, 2017, 36(13): 223-229.
[6] Wang Z, Qi D. Experimental study of dynamic response of two layers stacked packaging units of computers. Journal of Mechanical Engineering , 2017, 53(3): 90-99.
[7] 孙君,王志伟. 啤酒瓶周转箱随机振动响应的实验研究[J]. 振动工程学报, 2018, 31(5): 759-771.
SUN Jun, WANG Zhi-wei. Experimental study on random vibration response of beer bottle container[J]. Journal of Vibration Engineering, 2018, 31(5): 759-771.
[8] Wang Z, Wang Y, Wang Q, Zhang J, et al. Fuzzy norm method for evaluating random vibration of airborne platform from limited PSD data[J]. Chinese Journal of Aeronautics 2014, 27(6): 1442-1450.
[9]Allegri G, Zhang X. On the inversePower laws for accelerated random fatigue testing[J]. International Journal of Fatigue, 2008, 30(6): 967-977.
[10] Decker M, Kinscherf S, Bauer N, et al. Deriving fatigue equivalent power spectral density spectra for the vibration testing of engine components. Materialwissenschaft und Werkstofftechnik, 2018, 49(3): 392-405.
[11] 伍义生. 窄带和宽带随机载荷下的疲劳寿命估算[J]. 固体力学学报, 1992, 13(4): 322-329.
WU Yi-sheng. Fatigue life estimation under narrowband and wideband random loads[J]. Journal of Solid Mechanics, 1992, 13(4): 322-329.
[12] 关迪, 范学领, 肖滨,等. 某型机载模块的随机振动疲劳分析[J]. 机械强度, 2019, 41(1): 66-71.
GUAN Di, FAN Xue-ling, XIAO Bin, et al. Random vibration fatigue analysis of an airborne module[J]. Journal of Mechanical Strength, 2019, 41(1): 66-71.
[13] 江春冬,武玉维. 包装件在随机振动下的破损机理及相关量检测[J]. 中国测试, 2015, 41(8): 27-30.
JIANG Chun-dong, WU Yu-wei. Damage mechanism and relative quantity detection of packaging under random vibration[J]. Chinese Journal of Testing and Measurement, 2015, 41(8): 27-30.
[14]Fatemi A, Yang L. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials[J]. International Journal of Fatigue, 1998, 20(1): 9-34.
[15] 王立军,宋海燕,王志伟. 运输包装加速随机振动实验研究综述[J]. 振动与冲击, 2022, 41.
WANG Li-jun, SONG Hai-yan, WANG Zhi-wei. Review of experimental research on accelerated Random Vibration of transport packaging[J]. Journal of Vibration and Shock, 2022, 41.
[16] 李超. 基于功率谱密度的疲劳寿命估算[J]. 机械设计与研究, 2005, 21(2): 6-8.
LI Chao. Fatigue life estimation based on power spectral density[J]. Mechanical Design and Research, 2005, 21(2): 6-8.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}