基于变分模态分解的复杂航天器姿态扰动分析

林晓冬1,2,张锐1,2,刘芳1,兰青2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 303-309.

PDF(2112 KB)
PDF(2112 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 303-309.
论文

基于变分模态分解的复杂航天器姿态扰动分析

  • 林晓冬1,2,张锐1,2,刘芳1,兰青2
作者信息 +

Attitude disturbance analysis for complex spacecraft based on variational mode decomposition

  • LIN Xiaodong1,2, ZHANG Rui1,2, LIU Fang1, LAN Qing2
Author information +
文章历史 +

摘要

本文以复杂航天器姿态控制系统为研究对象,在考虑航天器配置挠性帆板和充液贮箱的复杂情况下,对姿态控制系统闭环中由于帆板挠性和液体晃动产生的干扰力矩进行特性分析。首先基于虚功率法建立复杂航天器整体动力学方程,同时建立帆板振动和液体晃动动力学方程;然后采用相平面控制律完成复杂航天器姿态闭环控制仿真,对帆板挠性和液体晃动产生的干扰力矩进行数据采集;最后基于变分模态分解法对扰动力矩时域数据进行时频分析得到其扰动特性,为后续扰动抑制算法的设计提供理论基础。通过数学仿真结果表明该方法的适用性和准确性。

Abstract

Attitude control system of complex spacecraft is taken as the research object. Considering the complex situation of the flexible panel and liquid storage tank of spacecraft, the characteristics of the interference torques caused by the flexible panel and liquid sloshiness in the closed loop of the attitude control system are analyzed. Firstly, the dynamic equations of the complex spacecraft were established based on the virtual power method, and the dynamics equations of the vibration and liquid sloshiness of the spacecraft were also established. Then, the phase plane control law is used to complete the closed-loop control simulation of complex spacecraft attitude, and the interference torques generated by the flexibility and liquid sloshiness are collected. Finally, based on the variational mode decomposition method, the time-frequency analysis of the time domain data of the disturbance torque is carried out to obtain its disturbance characteristics, which provides a theoretical basis for the design of the subsequent disturbance suppression algorithm. Simulation results show the applicability and accuracy of the proposed method.

关键词

变分模态分解 / 帆板挠性 / 液体晃动 / 相平面控制

Key words

Variational modal decomposition / Flexibility of sailboard / Liquid slosh / Phase plane control

引用本文

导出引用
林晓冬1,2,张锐1,2,刘芳1,兰青2. 基于变分模态分解的复杂航天器姿态扰动分析[J]. 振动与冲击, 2023, 42(13): 303-309
LIN Xiaodong1,2, ZHANG Rui1,2, LIU Fang1, LAN Qing2. Attitude disturbance analysis for complex spacecraft based on variational mode decomposition[J]. Journal of Vibration and Shock, 2023, 42(13): 303-309

参考文献

[1] Hablani H B. Modal analysis of gyroscopic flexible spacecraft: a continuum approach [J]. Journal of Guidance, Control, and Dynamics, 1982, 5(5): 448-457.
[2] 曹登庆, 白坤朝, 丁虎, 等. 大型柔性航天器动力学与振动控制研究进展[J]. 力学学报, 2019, 51(1): 1-13.
CAO Deng-qing, BAI Kun-chao, DING Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13.
[3] 胡海岩, 田强, 张伟, 等. 大型网架式可展开空间结构的非线性动力学与控制[J]. 力学进展, 2013, 43(4): 390-414.
HU Hai-yan, TIAN Qiang, ZHANG Wei, et al. Nonlinear Dynamics and Control of Large Deployable Space Structures Composed of Trusses and Meshes [J]. Advances in Mechanics, 2013, 43(4): 390-414.
[4] Cao D, Wang L, Wei J, et al. Natural frequencies and global mode functions for flexible jointed-panel structures [J]. Journal of Aerospace Engineering, 2020, 33(4): 1-10.
[5] 苗楠, 王天舒, 李俊峰. 微重环境下液体晃动研究进展[J]. 力学与实践, 2016, 38(3): 229-236.
MIAO Nan, WANG Tian-shu, LI Jun-feng. Research progress of liquid sloshing in microgravity [J]. Mechanics in Engineering, 2016, 38(3): 229-236.
[6] Liu F, Yue BZ, Banerjee AK, et al. Large motion dynamics of inorbit flexible spacecraft with large amplitude propellant slosh [J]. Journal of Guidance, Control, and Dynamics, 2020, 43(3): 438-450.
[7] Farid M, Gendelman O V. Response regimes in equivalent mechanical model of moderately nonlinear liquid sloshing [J]. Nonlinear Dynamics, 2018, 92(4): 1517-1538.
[8] 宋新宇, 戈新生. 挠性航天器动力学模型的非约束模态分析[J]. 力学学报, 2020, 52(4): 954-964.
SONG Xin-yu, GE Xin-sheng.Unconstrained modal analysis of dynamic model of flexible spacecraft [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 954-964.
[9] 何贵勤, 曹登庆, 陈帅, 等. 挠性航天器太阳翼全局模态动力学建模与实验研究[J]. 力学学报, 2021, 53(8): 2313-2323.
HE Gui-qin, CAO Deng-qing, CHEN Shuai, et al. Study on global mode dynamic modeling and experiment for a solar array of the flexible spacecraft [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2312-2322.
[10] 刘峰, 岳宝增, 马伯乐, 等. 燃料消耗下充液航天器等效动力学建模与分析 [J]. 力学学报, 2020, 52(5): 1454-1464.
LIU Feng, YUE Bao-zeng, MA Bo-le, et al. Equivalent dynamics modeling and analysis of liquid-filled spacecraft with fuel consumption [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1454-1464.
[11] 岳宝增,马伯乐,唐勇, 等.液体大幅晃动情形的航天器刚液耦合动响应仿真分析[J].宇航学报,2022,43(02):173-182.
YUE Bao-zeng, MA Bo-le, TANG Yong, et al. Dynamic Simulation and Analysis of Rigid liquid Coupling Spacecraft with Large amplitude Liquid Sloshing [J]. Journal of Astronautics. 2022,43(02):173-182.
[12] 苗楠, 李俊峰, 王天舒. 横向激励下液体大幅晃动建模分析[J].宇航学报, 2016, 37(3): 268-274.
MIAO Nan, LI Jun-feng, WANG Tian-shu. Modeling Analysis of Large-Amplitude Liquid Sloshing Under Lateral Excitation [J]. Journal of Astronautics. 2016, 37(3): 268-274.
[13] 王天舒, 苗楠, 李俊峰. 航天器交会对接中液体燃料晃动等效模型研究[J]. 空间控制技术与应用, 2015, 41(3): 1-7.
WANG Tian-shu, MIAO Nan, LI Jun-feng. Liquid Sloshing EquivalentM echanicalM odelduring Rendezvous and Docking [J]. Aerospace Controland Application,2015, 41(3): 1-7.
[14] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531 – 544.
[15] JACEK U,TOMASZ B,MARCIN S,et al. Normalization of vibration signals generated under highly varying speed and load with application to signal separation [J].Mechanical Systems&Signal Processing, 2017, 82: 13-31.
[16] 彭亚雄, 刘广进, 苏莹, 等. 基于变分模态分解算法的隧道爆破振动信号光滑降噪模型[J]. 振动与冲击, 2021, 40(24): 173-179.
PENG Ya-xiong, LIU Guang-jin, SU Ying, et al. A smooth denoising model of tunnel blasting vibration signal based on VMD [J]. Journal of Vibration and Shock, 2021, 40(24): 173-179.

PDF(2112 KB)

Accesses

Citation

Detail

段落导航
相关文章

/