随着航天器大型天线展开驱动力矩需求越来越大,天线展开到位时的冲击载荷控制问题逐渐引起工程界的重视。文章介绍了一种航天器展开机构用大行程、大阻尼转动阻尼器,可有效抑制展开机构展开时的冲击载荷。首先对转动阻尼器的工作原理进行了简要介绍,建立了转动阻尼器力学模型,分析了转动阻尼器的阻尼特性;其次,采用MSC.ADAMS软件,对天线从收拢状态到完全展开状态这一展开过程进行了动力学数值仿真分析,分析了转动阻尼器对展开速度以及展开到位时锁定冲击力的影响;最后,搭建了转动阻尼器阻尼性能测试平台,并且进行了阻尼性能测试。结果表明,阻尼力矩仿真值与实验值误差在2%以内,安装转动阻尼器后天线展开到位时锁定冲击载荷幅值下降达91%,展开末期展开速度下降达81%,验证了转动阻尼器对冲击载荷控制的有效性。
Abstract
With the increasing demand for the driving torque of large antennas of spacecraft, the problem of shock load control when the antenna is deployed in place has gradually attracted the attention of the engineering community. This paper introduces a large-stroke, large-damping rotational damper for spacecraft deployment mechanism, which can effectively suppress the impact load when the deployment mechanism is deployed. Firstly, the working principle of the rotary damper is briefly introduced, the mechanical model of the rotary damper is established, and the damping characteristics of the rotary damper are analyzed. Then, MSC.ADAMS software was used to simulate the dynamic numerical simulation of the expansion process of the antenna from the closed state to the fully expanded state, and the influence of the rotating damper on the unfolding speed and the locking impact force when it was deployed in place was analyzed. Finally, the damping performance test platform of the rotary damper was built and the damping performance test was carried out. The results show that the error between the simulated value of damping torque and the experimental value is within 2%, and the amplitude of the locking shock load decreases by 91% when the antenna is deployed in place after the rotating damper is installed, and the unfolding speed at the end of the deployment decreases by 81%, which verifies the effectiveness of the rotating damper for impact load control.
Key words
deployment mechanisms /
viscous deployment damper /
damping torque /
damping rate
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Tan Guodong, Duan Xuechao, Niu Dingchao, et al. Visual synthesis of uniaxial synchronous deployment mechanisms for solid-surface deployable antennas[J]. Mechanism and Machine Theory,2022,178.
[2] 关奉伟, 曹乃亮. 一种空间可展开的伸缩机构研究[J]. 振动与冲击, 2019, 38(04): 103-109.
GUAN Feng-wei, CAO Nai-liang. A study on a space deployable telescopic mechanism [J]. Journal of vibration and shock, , 2019, 38(04): 103-109.
[3] 韩雪艳, 宋敬伟, 高振辉,等. 不同工况下含间隙铰链接触碰撞力特性研究[J]. 振动与冲击, 2022, 41(04): 246-252.
HAN Xue-yan, SONG Jing-wei, GAO Zhen-hui, et al. A study on the characteristics of contact force of a hinge with clearance under different working conditions [J], Journal of Vibration and Shock, 2022, 41(04):246-252.
[4] 王朋朋, 高 博, 艾永强,等. 基于冲击响应分析的星载可展天线解锁策略优化[J]. 振动与冲击, 2017, 36(10): 57-62.
WANG Peng-peng, GAO Bo, AI Yong-qiang, et al. Release strategy optimization for deployable satellite antennas based on shock response analysis [J], Journal of Vibration and Shock, 2017, 36(10): 57-62.
[5] 臧 旭, 吴 松, 唐国安,等. 基于非线性瞬态响应的空间站柔性太阳翼在轨载荷分析[J]. 振动与冲击, 2020, 39(14): 22-28.
ZANG Xu, WU Song, TANG Guo-an, et al. Nonlinear transient on-orbit load analysis of a flexible solar array [J]. Journal of Vibration and Shock, 2020, 39(14): 22-28.
[6] 陈烈民.航天器结构与机构.北京,中国科学技术出版社,2005.
[7] 邹元杰, 葛东明, 刘绍奎,等. 航天器大型天线振动控制方案及其试验验证[J]. 航天器工程, 2018, 27(3): 135-139.
ZOU Yuan-jie, GE Dong-ming, LIU Shao-kui, et al. Vibration Control Scheme and Its Experimental Verification for Large Spacecraft Antenna [J], Spacecraft Engineering, 2018, 27(3): 135-139.
[8] 闵 为, 杨 珂, 李 成,等. 孔隙式黏滞阻尼器的力学特性研究[J]. 振动与冲击, 2021, 40(09): 125-132.
MIN Wei, YANG Ke, LI Cheng, et al. Mechanical characteristics of pore type viscous damper [J], Journal of Vibration and Shock, 2021, 40(09): 125-132.
[9] 孙靖雅, 焦素娟, 张 磊,等. 黏滞流体阻尼器冲击缓冲特性研究[J]. 振动与冲击, 2013, 32(14): 196-199.
SUN Jing-ya, JIAO Su-juan, ZHANG Lei, et al. Shock absorption characteristics of a viscous fluid damper [J]. Journal of Vibration and Shock, 2013, 32(14): 196-199.
[10] 徐青华,刘立平.航天器展开机构阻尼器技术概述[J]. 航天器环境工程, 2007, 24(4): 239-243.
Xu Qing-hua, LIU Li-ping. Techniques of dampers for spacecraft deployment mechanism [J]. Spacecraft Environmental Engineering, 2007, 24(4): 239-243.
[11] Mitter W, Zemann J, Nitschko T, et al. Adjustable large range rotary deployment damper [C]//Proceedings of 13th European Space Mechanism and Tribology Symposium. Vienna: European Space Agency, 2009.
[12] Koller F, Nitschko T, Labruyere G. Viscous Rotary Damper. Proc. Fifth European Space Mechanisms and Tribology Symposium. ESA SP-334, April 1993.
[13] 濮海玲, 王 晛, 杨巧龙. 黏滞型阻尼器对太阳翼展开性能的影响分析[J]. 航天器工程, 2013, 22(1): 54-59.
PU Hai-ling, WANG Xian, YANG Qiao-long. Analysis of Viscous Damper Effect on Solar Array Deployment [J]. Spacecraft Engineering, 2013, 22(1): 54-59.
[14] 濮海玲, 刘志全, 王 晛. 太阳翼黏滞阻尼器的可靠性评估方法[J]. 航天器工程, 2013, 22(05): 42-45.
PU Hai-ling, LIU Zhi-quan, WANG Xian. Reliability Assessment of Rotary Viscous Damper for Solar Wing [J]. Spacecraft Engineering, 2013, 22(05): 42-45.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}