一种薄膜反射面天线型面精度主动控制方法

谷永振1,段宝岩2,张顺吉2,钟旺2,张庆港1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 316-322.

PDF(2049 KB)
PDF(2049 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 316-322.
论文

一种薄膜反射面天线型面精度主动控制方法

  • 谷永振1,段宝岩2,张顺吉2,钟旺2,张庆港1
作者信息 +

An active control method for profile accuracy of membrane reflector antenna

  • GU Yongzhen1, DUAN Baoyan2, ZHANG Shunji2, ZHONG Wang2, ZHANG Qinggang1
Author information +
文章历史 +

摘要

针对如何有效进行薄膜反射面天线型面精度主动控制的问题,提出了一种静电力和边界索力相结合的双向控制方法。首先,推导了薄膜反射面和薄膜控制面间距发生变化时的静电力计算公式,并给出了静电力更新流程;然后,以电极电压和边界索力为设计变量,以薄膜反射面型面精度为优化目标,建立了薄膜反射面天线型面精度主动控制模型;最后,通过两种形式温度载荷作用下的薄膜反射面天线型面精度主动控制仿真算例,验证了控制方法的有效性。

Abstract

Aiming at the problem of how to effectively control the shape accuracy of the membrane reflector antenna, a bidirectional control method combining with electrostatic forces and boundary cable forces is proposed. Firstly, the electrostatic forces calculation formulas are derived when the distance between the membrane reflector surface and the membrane control surface changes, and the electrostatic forces update process is given. Then, with the electrode voltages and boundary cable forces as the design variables, and the membrane reflector surface accuracy as the optimization objective, an active control model for the membrane reflector antenna surface accuracy is established. Finally, the effectiveness of the control method is verified by two simulation examples of active control of membrane reflector antenna shape accuracy under two forms of temperature load.

关键词

薄膜反射面天线 / 主动控制 / 静电力 / 边界索力

Key words

membrane reflector antenna / active control / electrostatic forces / boundary cable forces

引用本文

导出引用
谷永振1,段宝岩2,张顺吉2,钟旺2,张庆港1. 一种薄膜反射面天线型面精度主动控制方法[J]. 振动与冲击, 2023, 42(13): 316-322
GU Yongzhen1, DUAN Baoyan2, ZHANG Shunji2, ZHONG Wang2, ZHANG Qinggang1. An active control method for profile accuracy of membrane reflector antenna[J]. Journal of Vibration and Shock, 2023, 42(13): 316-322

参考文献

[1] 刘荣强,史创,郭宏伟,等. 空间可展开天线机构研究与展望[J]. 机械工程学报, 2020, 56(5): 1-12.
Liu Rongqiang, Shi Chuang, Guo Hongwei, et al. Review of space deployable antenna mechanisms[J]. Journal of Mechanical Engineering, 2020, 56(5): 1-12.
[2] 段宝岩. 大型空间可展开天线的研究现状与发展趋势[J]. 电子机械工程, 2017, 33(1): 1-14.
Duan Baoyan. The state-of-the-art and development trend of large space-borne deployable antenna. Electro-Mechanical Engineering, 2017, 33(1): 1-14.
[3] Chandra M, Kumar S, Chattopadhyaya S, Chatterjee S, Kumar P. A review on developments of deployable membrane-based reflector antennas[J]. Advances in Space Research, 2021, 68(9): 3749-3764.
[4] Hill J, Wang K W, Fang H. Advances of surface control methodologies for flexible space reflectors[J]. Journal of Spacecraft and Rockets, 2013, 50(4):816-828.
[5] Fang H, Pattom M, Wang K, et al. Shape Control of Large Membrane Reflector with PVDF Actuation[C]. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 23-27 April 2007, Honolulu, Hawaii, AIAA 2007-1842.
[6] Witherspoon S R, Tung S, Roe L A. Development of a mems-based health monitoring module for space inflatable structures[C]. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structure Dynamics, and Materials Conference and Exhibit, Seattle, Wasington, Unites States, 2001.
[7] Chodimella S, Moore J, Otto J, Fang H. Design evaluation of a large aperture deployable antenna[C]. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, May 1-4, 2006, AIAA 2006-1603.
[8] Duan B, Gao F, Du J, et al. Optimization and experiment of an electrostatic forming membrane reflector in space[J]. Journal of Mechanical Science and Technology, 2015, 29(4): 1355-1360.
[9] Gu Y, Duan B, Du J. The establishment and application of direct coupled electrostatic-structural field model in electrostatically controlled deployable membrane antenna[J]. Acta Astronautica, 2018, 146: 185-191.
[10] Zhang Y, Gao F, Zhang S, et al. Electrode grouping optimization of electrostatic forming membrane reflector antennas[J]. Aerospace Science and Technology, 2015, 41: 158-166.
[11] Liu C, Yang G, Zhang Y. Optimization design combined with coupled structural–electrostatic analysis for the electrostatically controlled deployable membrane reflector[J]. Acta Astronautica, 2015, 106: 90-100.
[12] Jenkins C H, Schur W W. Gore/Seam architectures for gossamer structures[J]. Journal of Spacecraft and Rockets, 2002, 39(5):669-673.
[13] DeSmidt H A, Wang K W, Fang H. Optimized gore/seam cable actuated shape control of gossamer membrane reflectors[J]. Journal of Spacecraft and Rockets, 2007, 44(5):1122-1130.
[14] Lindler J, Flint E M. Boundary actuation shape control strategies for thin film single surface shells[C]. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structure Dynamics, and Materials Conference. Palm Springs, California, United States, 2004.
[15] 马亚静, 杜敬利, 段宝岩, 等. 考虑支撑桁架变形的星载索网反射面天线形态设计方法[J]. 机械工程学报, 2015, 51(17):114-119.
Ma Yajing, Du Jingli, Duan Baoyan, et al. A Method to Design the Initial Equilibrium State of Spaceborne Cable-net Antenna Considering the Flexibility of Supporting Trusses. Journal of Mechanical Engineering, 2015, 51(17):114-119.

PDF(2049 KB)

Accesses

Citation

Detail

段落导航
相关文章

/