油气管道封堵机器人封堵过程的振动预测

苗兴园,赵弘

振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 36-49.

PDF(4610 KB)
PDF(4610 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 36-49.
论文

油气管道封堵机器人封堵过程的振动预测

  • 苗兴园,赵弘
作者信息 +

Vibration prediction of oil and gas pipeline plugging robot in plugging process

  • MIAO Xingyuan, ZHAO Hong
Author information +
文章历史 +

摘要

以管道封堵机器人(Pipeline isolation plugging robot, PIPR)为载体的管道维抢修技术是保障管道安全运输的重要手段。针对封堵作业时PIPR的冲击振动现象,分别从运动过程和封堵操作两个方面对其进行振动分析。建立基于双向流固耦合的PIPR动力学模型,对运动过程中PIPR的轴向、径向和俯仰振动进行仿真分析。进行PIPR不同扰流模型的封堵试验,观察不同模型封堵过程流场变化,并以封堵过程的压力梯度衡量PIPR振动情况。提出改进海鸥算法(ISOA)优化核极限学习机(KELM)方法,分别建立不同扰流模型的压力梯度代理模型,以实现PIPR的振动预测。结果表明,提出的代理模型可以实现不同扰流模型封堵过程压力梯度的准确预测。这对于保障封堵作业的稳定性具有指导意义。

Abstract

Pipeline maintenance technology based on the pipeline isolation plugging robot (PIPR) is an important means to ensure the safe transportation of pipelines. Aiming at the shock vibration of PIPR during plugging operation, the vibration analysis was carried out from two aspects of motion process and plugging operation. The PIPR’s dynamic model based on fluid-solid coupling was established to analyze the axial, radial and pitch vibrations of the PIPR during the movement. The plugging experiment for different spoiler models of PIPR was carried out to observe the change of flow field during the plugging process. And the pressure gradient during the plugging process was used to measure the vibration of PIPR. The Kernel Extreme Learning Machine (KELM) optimized by Improved Seagull Optimization Algorithm (ISOA) was proposed to establish the pressure gradient proxy model for each spoiler model respectively, to realize the vibration prediction of PIPR. The results showed that the proposed proxy models could achieve accurate prediction of pressure gradient during the plugging process for different spoiler models. This had guiding significance for ensuring the stability of the plugging operation.

关键词

管道封堵机器人 / 冲击振动 / 扰流模型 / 改进海鸥算法 / 核极限学习机

Key words

Pipeline isolation plugging robot / Shock vibration / Spoiler model / Improved Seagull Optimization Algorithm (ISOA) / Kernel Extreme Learning Machine (KELM)

引用本文

导出引用
苗兴园,赵弘. 油气管道封堵机器人封堵过程的振动预测[J]. 振动与冲击, 2023, 42(13): 36-49
MIAO Xingyuan, ZHAO Hong. Vibration prediction of oil and gas pipeline plugging robot in plugging process[J]. Journal of Vibration and Shock, 2023, 42(13): 36-49

参考文献

[1] RAI A and KIM J. A novel pipeline leak detection approach independent of prior failure information [J]. Measurement, 2021, 167: 108284.
[2] WANG Jiajian, REN Liang, JIA Ziguang, et al. A novel pipeline leak detection and localization method based on the FBG pipe-fixture sensor array and compressed sensing theory [J]. Mechanical Systems and Signal Processing, 2022, 169:108669.
[3] ZHAO Hong, HU Haoran. Optimal design of a pipe isolation plugging tool using a computational fluid dynamics simulation with response surface methodology and a modified genetic algorithm [J]. Advances in Mechanical Engineering, 2017, 9(10).
[4] MIAO Xingyuan, ZHAO Hong, GAO Boxuan, et al. Vibration Reduction Control of In-Pipe Intelligent Isolation Plugging Tool Based on Deep Reinforcement Learning [J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, published online.
[5] 王焱,张仕民,张行,等. Φ1016 mm油气管道管内智能封堵器的设计[J].管道技术与设备,2015,(01):27-29+48.
   WANG Yan,ZHANG Shimin,ZHANG Hang,et al. Design of intelligent plugging device in Φ1016 mm oil and gas pipelines [J]. Pipeline Technique And Equipment,2015, (01):27-29+48.
[6] WU Tingting, ZHAO Hong, GAO Boxuan, et al. Energy-Saving for a Velocity Control System of a Pipe Isolation Tool Based on a Reinforcement Learning Method [J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 9(1): 225-240.
[7] ZHANG Kang, DING Qingxin, LIU Shuhai, et al. Research on pressure fluctuation phenomenon using the smart isolation tool in subsea pipeline maintenance operation [J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2019, 233(2):1-10.
[8] WU Tingting, ZHAO Hong, GAO Boxuan, et al. Structural optimization strategy of pipe isolation tool by dynamic plugging process analysis [J]. Petroleum Science, 2021, 18(6): 225-240.
[9] 苗兴园, 赵弘, 王晨鉴. 管内智能封堵器减振结构设计及优化[J].石油机械, 2020, 48(05):99-106.
    MIAO Xingyuan, ZHAO Hong, WANG Chenjian. Design and Optimization of Vibration Reduction Structure of Intelligent Pluggers inside Pipe [J]. China Petroleum Machinery, 2020, 48(05):99-106.
[10] 苗兴园, 赵弘. 基于蒙特卡罗算法的管内智能封堵器减振结构优化设计[J].石油矿场机械, 2020, 49(06):46-54.
    MIAO Xingyuan, ZHAO Hong. Optimal Design of Vibration Structure of Intelligent Plugging Isolation Tool Based on Monte Carlo Algorithm [J]. Oil Field Equipment, 2020, 49(06):46-54.
[11] 李健. 复合驱动链式管内机器人动力学研究[D]. 哈尔滨:哈尔滨工业大学, 2017.
[12] HE Honggang, LIANG Zheng, CUI Xiao, et al. Molding and Simulation of Pig Speed with Brake Unit in Gas Pipeline [J]. Journal of Pipeline Systems Engineering and Practice, 2020, 11(1): 04019042.
[13] 张旭. 复合驱动管内机器人转向运动过程稳定性研究[D]. 哈尔滨:哈尔滨工业大学, 2018.
[14] Mirshamsi M, Rafeeyan M. Dynamic analysis and simulation of long pig in gas pipeline [J]. Journal of Natural Gas Science and Engineering, 2015, 23: 294-303.
[15] 张春晋,张学琴,张敏,等. 基于Fluent的管道车振动运移水力特性仿真分析[J]. 振动与冲击, 2021, 40(17): 70-75+98.
    ZHANG Chunjin, ZHANG Xueqin, ZHANG Min, et al. Simulation analysis of hydraulic characteristic of pipeline vehicle vibration migration based on Fluent [J]. Journal of Vibration and Shock, 2021, 40(17): 70-75+98.
[16] 张春晋,孙西欢,李永业,等. 基于流固耦合的管道双车振动运移水力特性研究[J]. 振动与冲击, 2020, 39(03): 161-167+177.
    ZHANG Chunjin, SUN Xihuan, LI Yongye, et al. Hydraulic characteristic of a piped double-carriage’s vibrational transport based on fluid-structure interaction [J]. Journal of Vibration and Shock, 2020, 39(03): 161-167+177.
[17] 耿亚飞.深水管道封堵器设计及振动特性研究[D]. 哈尔滨:哈尔滨工程大学, 2018.
[18] 江旭东,孙其海,滕晓艳.基于CEL方法的压差驱动式管道机器人动力特性分析[J]. 振动与冲击, 2019,38(23): 259-264+270.
    JIANG Xudong, SUN Qihai, TENG Xiaoyan. Dynamic characteristic analysis for an in-pipe robot driven by pressure difference based on CEL approach [J]. Journal of Vibration and Shock, 2019, 38(23): 259-264+270.
[19] REN Hongxi, SHI Dongyan, XU Yang, et al. Research on dynamics and vibration response in pipeline inspection gauge (PIG) based on the CEL method[C]. INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering, 2017, 255(7):56-67.
[20] PIATKOWSKI T. Dahl and LuGre dynamic friction models — The analysis of selected properties [J]. Mechanism and Machine Theory, 2014, 73: 91-100.
[21] SHI Dongyan, XU Yang, Helal W, et al. Fluid-solid coupling numerical analysis of dynamic vibration characteristics of the Pipeline Inspection Gauge (PIG) in the pipeline [C]. INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering, 2017, 255(7):261-269.
[22] KIM S, YOO K, KOO B, et al. Speed excursion simulation of PIG using improved friction models [J]. Journal of Natural Gas Science and Engineering, 2022, 97: 104371.
[23] 苗兴园,赵弘.管内智能封堵器气动减振系统主动控制[J].石油机械, 2021, 49(06):51-60.
    MIAO Xingyuan, ZHAO Hong. Active Control of Pneumatic Damping System for Intelligent Pipeline Plug [J]. China Petroleum Machinery, 2021, 49(06):51-60.
[24] ZHAO Hong, ZHAO Yixin, YE Zhihui. Interactions between the fluid and an isolation tool in a pipe: laboratory experiments and numerical simulation [J]. Petroleum Science, 2016, 13(04): 746-759.
[25] MIAO Xingyuan, ZHAO Hong. Regulating Control of In-Pipe Intelligent Isolation Plugging Tool Based on Adaptive Dynamic Programming[J]. Journal of Pipeline Systems Engineering and Practice, 2022, 13(2): 04022003.
[26] 朱平, 严宏鑫. 基于小波分解和极限学习机的柔性PVC基材损伤识别研究[J]. 振动与冲击, 2022, 41(13):220-227.
    ZHU Ping, YAN Hongxin. Damage identification of flexible PVC substrate based on wavelet decomposition and limit learning machine [J]. Journal of Vibration and Shock, 2022, 41(13):220-227.
[27] 胡爱军,张军华,刘随贤,等. 滚动轴承多工况故障的特征自动选择核极限学习机智能识别方法[J]. 振动与冲击, 2020, 39(23):182-189.
    HU Aijun, ZHANG Junhua, LIU Suixian, et al. Intelligent identification method using kernel extreme learning machine for rolling bearing multi-working condition multi-feature automatic selection [J]. Journal of Vibration and Shock, 2020, 39(23):182-189.
[28] Gaurav D, Vijay K. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems [J]. Knowledge-Based Systems, 2018, 165: 169-196.
[29] 毛清华,王迎港. 融合改进Logistics混沌和正弦余弦算子的自适应t分布海鸥算法[J].小型微型计算机系统,2021,1-9.
    MAO Qinghua, WANG Yinggang. Adaptive T-distribution Seagull Optimization Algorithm Combining Improved Logistics Chaos and Sine-cosine Operator [J]. Journal of Chinese Computer Systems, 2021, 1-9.

PDF(4610 KB)

280

Accesses

0

Citation

Detail

段落导航
相关文章

/