[1] Pilkey A K, Lambert S B, Plumtree A K. Stress Corrosion Cracking of X-60 Line Pipe Steel in a Carbonate-Bicarbonate Solution[J]. Corrosion, 1995, 51: 91–96.
[2] Aljaroudi A, Khan F, Akinturk A, et al. Risk assessment of offshore crude oil pipeline failure[J]. Journal of Loss Prevention in the Process Industries, 2015, 37: 101–109.
[3] Zeinoddini M, Arabzadeh H, Ezzati M, et al. Response of submarine pipelines to impacts from dropped objects: Bed flexibility effects[J]. International Journal of Impact Engineering, 2013, 62:129-141.
[4] Zhang X H, Duan M L, Soares C G. Lateral buckling critical force for submarine pipe-in-pipe pipelines[J]. Applied Ocean Research, 2018, 78: 99-109.
[5] Soares C G, Søreide T H. Plastic analysis of laterally loaded circular tubes[J]. Journal of Structural Engineering, 1983;109(2): 451–67.
[6] Jones N, Birch S E, Birch R S, et al. An experimental study on the lateral impact of fully clamped mild steel pipes[J]. Journal of Process Mechanical Engineering, 1992, 206(2): 111-27.
[7] Jones N, Shen W Q. A theoretical study of the lateral impact of fully clamped pipelines[J]. Journal of Process Mechanical Engineering, 1992, 206: 129-46.
[8] Jones N, Birch R S. Influence of Internal Pressure on the Impact Behavior of Steel Pipelines[J]. Journal of Pressure Vessel Technology, 1997, 119(1): 17.
[9] Chen K, Shen W Q. Further experimental study on the failure of fully clamped steel pipes[J]. International Journal of Impact Engineering, 1998, 21(3): 177-202.
[10] Ong L S, Lu G. Collapse of tubular beams loaded by a wedge-shaped indenter[J]. Experimental Mechanics, 1996, 36(4): 374-378.
[11] Li W, Gu Y Z, Han L H. Behaviour of ultra-high strength steel hollow tubes subjected to low velocity lateral impact: Experiment and finite element analysis[J]. Thin-Walled Structures, 2019, 134: 524-536.
[12] Qu H, Huo J S, Xu C, et al. Numerical studies on dynamic behavior of tubular T-joint subjected to impact loading[J]. International Journal of Impact Engineering, 2014, 67: 12-26.
[13] Qu H, Hu Y F, Huo J S, et al. Experimental study on tubular K-joints under impact loadings[J]. Journal of Constructional Steel Research, 2015, 112: 22-29.
[14] Zeinoddini M, Harding J E, Parke G A R. Effect of impact damage on the capacity of tubular steel members of offshore structures[J]. Marine Structures, 1998, 11(4): 141-157.
[15] Zeinoddini M, Harding J E, Parke G A R. Dynamic behaviour of axially pre-loaded tubular steel members of offshore structures subjected to impact damage[J]. Ocean Engineering, 1999, 26(10): 963-978.
[16] Zeinoddini M, Parke G A R, Harding J E. Axially pre-loaded steel tubes subjected to lateral impacts: An experimental study[J]. International Journal of Impact Engineering, 2002, 27(6): 669-690.
[17] Zhi X D, Zhang R, Fan F, et al. Experimental study on axially preloaded circular steel tubes subjected to low-velocity transverse impact[J]. Thin-Walled Structures, 2018, 130: 161-175.
[18] 黄新, 张大长. 圆钢管横向局部抗压承载力特性分析及计算理论[J]. 土木工程与管理学报, 2016, 33(05): 59-63.
HUANG Xin, ZHANG Da-chang. Numerical simulation and calculation theory of local compressive bearing capacity of circular steel tube under lateral load[J]. Journal of Civil Engineering and Management, 2016, 33(5): 59-63.
[19] 杨秀娟, 修宗祥, 闫相祯,等. 海底管道受坠物撞击的三维仿真研究[J]. 振动与冲击, 2009, 28(11): 47-50.
YANG Xiu-juan, XIU Zong-xiang, YAN Xiang-zhen, et al. 3D simulation of submarine pipeline impacted by dropped objects[J]. Journal of Vibration and Shock, 2009, 28(11): 47-50.
[20] 杨政龙, 余建星, 陈海成,等. 深海管道在冲击载荷作用下的局部屈曲特性研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(03): 255-261.
YANG Zheng-long, YU Jian-xing, CHEN Hai-cheng, et al. Local buckling characteristics of deep-sea pipelines under impact loading[J]. Journal of Tianjin University, 2019, 52(03): 255-261.
[21] 杨秀娟,闫涛,修宗祥,等. 海底管道受坠物撞击时的弹塑性有限元分析[J].工程力学,2011, 28(6):189-194.
YANG Xiu-juan, YAN Tao, XIU Zong-xiang, et al. Elastic-plastic finite element analysis of submarine pipeline impacted by dropped objects[J]. Engineering Mechanics, 2011, 28(6): 189-194.
[22] 李伟, 郭海燕, 李晓秋. 海底悬空管道受坠物撞击凹陷损伤研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(08): 139-144.
LI Wei, GUO Hai-yan, LI Xiao-qiu. Dent damage research of submarine suspended pipeline impacted by dropped objects[J]. Periodical of Ocean University of China, 2018, 48(08): 139-144.
[23] Zheng J X, Andrew P, Paul B. Overtrawlability and mechanical damage of pipe-in-pipe[J]. Journal of Applied Mechanics, 2013, 81(3): 31006-31006.
[24] Wang Y, Qian X D, Liew J Y R, et al. Impact of cement composite filled steel tubes: An experimental, numerical and theoretical treatise[J]. Thin-Walled Structures, 2015, 87: 76-88.
[25] Wang Y, Qian X D, Liew J Y R, et al. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact[J]. International Journal of Impact Engineering, 2014, 72: 1-16.
[26] Sun C, Zheng M, Soares C G, et al. Theoretical prediction model for indentation of pipe-in-pipe structures[J]. Applied Ocean Research, 2019, 92: 101940.
[27] 谢丽媛, 邵永波, 高旭东. 单层和双层足尺度海底管道抗冲击性能分析[J]. 振动与冲击, 2021, 40(1): 286-296.
[28] Gao X D, Shao Y B, Xie L Y, et al. Behavior of API 5L X56 submarine pipes under transverse impact[J]. Ocean Engineering, 2020, 206: 107337.
[29] ABAQUS. ABAQUS 6.14, analysis user’s manual[M]. Volume IV: Elements. Pawtucket USA: HKSHibbitt, Karlsson & Sorensen Inc.; 2014: 25. 1-1-25.1.7-6.
[30] API SPEC 5L. Specification for Line Pipe[S]. American Petroleum Institute, Washington, 2012.
[31] Richardson, M O W, Wisheart, M J. Review of low-velocity impact properties of composite materials[J]. Composites Part A (Applied Science and Manufacturing), 1996, 27A(12): 1123–1131.
[32] Jones, N, Birch, R S. Influence of internal pressure on the impact behavior of steel pipelines[J]. Journal of Pressure Vessel Technology, 1997, 119(1): 17.
[33] Abramowicz, W, Jones, N. Dynamic axial crushing of square tubes[J]. International Journal of Impact Engineering, 1984, 2(2): 179–208.
[34] 郭丹. 聚合物夹芯梁准静态局部压入行为分析[D]. 西安: 西安交通大学, 2014.
GUO Dan. Indentation behavior of sandwich beams with polymeric foams. Xian: Xi’an Jiaotong University, 2014.
[35] Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams[J]. Journal of the mechanics and physics of solids, 2000, 48: 1253-1283.
[36] GB/T 50538-2010《埋地钢质管道防腐保温层技术标准》国家标准发布[S]. 煤气与热力, 2011, 31(1):19-19.
GB/T50538-2010, Technical standard for anti-corrosion and insulation coatings of buried steel pipeline[S]. Gas & Heat, 2011, 31(1):19-19.
[37] Taherkhani A, Sadighi M, Vanini A S, et al. An experimental study of high-velocity impact on elastic–plastic crushable polyurethane foams[J]. Aerospace Science and Technology, 2016, 50: 245-255.
[38] Zarei H R, Ghamarian A. Experimental and Numerical Crashworthiness Investigation of Empty and Foam-Filled Thin-Walled Tubes with Shallow Spherical Caps[J]. Experimental Mechanics, 2013, 49(2): 199-211.
[39] Wang Y H, Pokharel R, Lu J Y, et al. Experimental, numerical, and analytical studies on polyurethane foam-filled energy absorption connectors under quasi-static loading[J]. Thin-Walled Structures, 2019, 144: 106257.1-106257.12.