API 5L X56管中管横向冲击性能的数值研究

高旭东1,石健1,邵永波2,李康帅2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 92-102.

PDF(4150 KB)
PDF(4150 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 92-102.
论文

API 5L X56管中管横向冲击性能的数值研究

  • 高旭东1,石健1,邵永波2,李康帅2
作者信息 +

Numerical investigation of transverse anti-impact performance of API 5L X56 pipe-in-pipe

  • GAO Xudong1, SHI Jian1, SHAO Yongbo2, LI Kangshuai2
Author information +
文章历史 +

摘要

随着海洋石油行业的蓬勃发展,油气田开发不断向深海发展,对海底管道性能的要求也不断提高。管中管具有良好的保温性能而逐渐得到应用。为系统地研究管中管结构的横向抗冲击性能,采用非线性有限元程序建立了数值模型,并与试验数据进行验证。参数化研究发现,一定冲击能量下,聚氨酯泡沫所吸收的能量与管中管的内管和外管所吸收能量的总和相比所占比重较小。随管中管壁厚和钢材等级的提高,管道的局部凹陷程度降低,海底管中管抵抗冲击变形的能力越强。随管中管悬跨长度增加,管中管跨中截面的残余位移逐渐增大,而横截面残余变形和局部凹陷深度逐渐减小,整体弯曲变形所占的比重逐渐增加,局部凹陷所占的比重有所减小。

Abstract

With the vigorous development of the offshore oil industry, the exploitation of oil and gas fields is gradually moving into the deep sea, and the requirements for the performance of submarine pipelines are also continuously improved. Pipe-in-pipe has good thermal insulation properties and is gradually being used. To systematically study the lateral impact resistance of the pipe-in-pipe, a numerical model was established using a nonlinear finite element code and verified with experimental data. The parametric study found that under certain impact energy, the energy absorbed by the polyurethane foam accounts for a smaller proportion than the sum of the energy absorbed by the inner tube and the outer tube of pipe-in-pipe. With the increase of the wall thickness and the steel grade of the pipe-in-pipe, the degree of local indentation of the pipe decreases, and the ability of submarine pipe-in-pipes to resist impact deformation is stronger. As the overhang length of the pipe-in-pipe increases, the residual displacement of the mid-span section of the pipe-in-pipe gradually increases, while the residual deformation of the cross-section and the depth of local indentation gradually decrease, and the proportion of the global bending deformation increases gradually, while the proportion of local indentation decreases.

关键词

API 5L X56管中管 / 抗冲击性能 / 聚氨酯泡沫 / 参数研究 / 局部凹陷

Key words

pipe-in-pipes / impact resistance / polyurethane foam / parameter study / local indentation

引用本文

导出引用
高旭东1,石健1,邵永波2,李康帅2. API 5L X56管中管横向冲击性能的数值研究[J]. 振动与冲击, 2023, 42(13): 92-102
GAO Xudong1, SHI Jian1, SHAO Yongbo2, LI Kangshuai2. Numerical investigation of transverse anti-impact performance of API 5L X56 pipe-in-pipe[J]. Journal of Vibration and Shock, 2023, 42(13): 92-102

参考文献

[1] Pilkey A K, Lambert S B, Plumtree A K. Stress Corrosion Cracking of X-60 Line Pipe Steel in a Carbonate-Bicarbonate Solution[J]. Corrosion, 1995, 51: 91–96.
[2] Aljaroudi A, Khan F, Akinturk A, et al. Risk assessment of offshore crude oil pipeline failure[J]. Journal of Loss Prevention in the Process Industries, 2015, 37: 101–109.
[3] Zeinoddini M, Arabzadeh H, Ezzati M, et al. Response of submarine pipelines to impacts from dropped objects: Bed flexibility effects[J]. International Journal of Impact Engineering, 2013, 62:129-141.
[4] Zhang X H, Duan M L, Soares C G. Lateral buckling critical force for submarine pipe-in-pipe pipelines[J]. Applied Ocean Research, 2018, 78: 99-109.
[5] Soares C G, Søreide T H. Plastic analysis of laterally loaded circular tubes[J]. Journal of Structural Engineering, 1983;109(2): 451–67.
[6] Jones N, Birch S E, Birch R S, et al. An experimental study on the lateral impact of fully clamped mild steel pipes[J]. Journal of Process Mechanical Engineering, 1992, 206(2): 111-27.
[7] Jones N, Shen W Q. A theoretical study of the lateral impact of fully clamped pipelines[J]. Journal of Process Mechanical Engineering, 1992, 206: 129-46.
[8] Jones N, Birch R S. Influence of Internal Pressure on the Impact Behavior of Steel Pipelines[J]. Journal of Pressure Vessel Technology, 1997, 119(1): 17.
[9] Chen K, Shen W Q. Further experimental study on the failure of fully clamped steel pipes[J]. International Journal of Impact Engineering, 1998, 21(3): 177-202.
[10] Ong L S, Lu G. Collapse of tubular beams loaded by a wedge-shaped indenter[J]. Experimental Mechanics, 1996, 36(4): 374-378.
[11] Li W, Gu Y Z, Han L H. Behaviour of ultra-high strength steel hollow tubes subjected to low velocity lateral impact: Experiment and finite element analysis[J]. Thin-Walled Structures, 2019, 134: 524-536.
[12] Qu H, Huo J S, Xu C, et al. Numerical studies on dynamic behavior of tubular T-joint subjected to impact loading[J]. International Journal of Impact Engineering, 2014, 67: 12-26.
[13] Qu H, Hu Y F, Huo J S, et al. Experimental study on tubular K-joints under impact loadings[J]. Journal of Constructional Steel Research, 2015, 112: 22-29.
[14] Zeinoddini M, Harding J E, Parke G A R. Effect of impact damage on the capacity of tubular steel members of offshore structures[J]. Marine Structures, 1998, 11(4): 141-157.
[15] Zeinoddini M, Harding J E, Parke G A R. Dynamic behaviour of axially pre-loaded tubular steel members of offshore structures subjected to impact damage[J]. Ocean Engineering, 1999, 26(10): 963-978.
[16] Zeinoddini M, Parke G A R, Harding J E. Axially pre-loaded steel tubes subjected to lateral impacts: An experimental study[J]. International Journal of Impact Engineering, 2002, 27(6): 669-690.
[17] Zhi X D, Zhang R, Fan F, et al. Experimental study on axially preloaded circular steel tubes subjected to low-velocity transverse impact[J]. Thin-Walled Structures, 2018, 130: 161-175.
[18] 黄新, 张大长. 圆钢管横向局部抗压承载力特性分析及计算理论[J]. 土木工程与管理学报, 2016, 33(05): 59-63.
HUANG Xin, ZHANG Da-chang. Numerical simulation and calculation theory of local compressive bearing capacity of circular steel tube under lateral load[J]. Journal of Civil Engineering and Management, 2016, 33(5): 59-63.
[19] 杨秀娟, 修宗祥, 闫相祯,等. 海底管道受坠物撞击的三维仿真研究[J]. 振动与冲击, 2009, 28(11): 47-50.
YANG Xiu-juan, XIU Zong-xiang, YAN Xiang-zhen, et al. 3D simulation of submarine pipeline impacted by dropped objects[J]. Journal of Vibration and Shock, 2009, 28(11): 47-50.
[20] 杨政龙, 余建星, 陈海成,等. 深海管道在冲击载荷作用下的局部屈曲特性研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(03): 255-261.
YANG Zheng-long, YU Jian-xing, CHEN Hai-cheng, et al. Local buckling characteristics of deep-sea pipelines under impact loading[J]. Journal of Tianjin University, 2019, 52(03): 255-261.
[21] 杨秀娟,闫涛,修宗祥,等. 海底管道受坠物撞击时的弹塑性有限元分析[J].工程力学,2011, 28(6):189-194.
YANG Xiu-juan, YAN Tao, XIU Zong-xiang, et al. Elastic-plastic finite element analysis of submarine pipeline impacted by dropped objects[J]. Engineering Mechanics, 2011, 28(6): 189-194.
[22] 李伟, 郭海燕, 李晓秋. 海底悬空管道受坠物撞击凹陷损伤研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(08): 139-144.
LI Wei, GUO Hai-yan, LI Xiao-qiu. Dent damage research of submarine suspended pipeline impacted by dropped objects[J]. Periodical of Ocean University of China, 2018, 48(08): 139-144.
[23] Zheng J X, Andrew P, Paul B. Overtrawlability and mechanical damage of pipe-in-pipe[J]. Journal of Applied Mechanics, 2013, 81(3): 31006-31006.
[24] Wang Y, Qian X D, Liew J Y R, et al. Impact of cement composite filled steel tubes: An experimental, numerical and theoretical treatise[J]. Thin-Walled Structures, 2015, 87: 76-88.
[25] Wang Y, Qian X D, Liew J Y R, et al. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact[J]. International Journal of Impact Engineering, 2014, 72: 1-16.
[26] Sun C, Zheng M, Soares C G, et al. Theoretical prediction model for indentation of pipe-in-pipe structures[J]. Applied Ocean Research, 2019, 92: 101940.
[27] 谢丽媛, 邵永波, 高旭东. 单层和双层足尺度海底管道抗冲击性能分析[J]. 振动与冲击, 2021, 40(1): 286-296.
[28] Gao X D, Shao Y B, Xie L Y, et al. Behavior of API 5L X56 submarine pipes under transverse impact[J]. Ocean Engineering, 2020, 206: 107337.
[29] ABAQUS. ABAQUS 6.14, analysis user’s manual[M]. Volume IV: Elements. Pawtucket USA: HKSHibbitt, Karlsson & Sorensen Inc.; 2014: 25. 1-1-25.1.7-6.
[30] API SPEC 5L. Specification for Line Pipe[S]. American Petroleum Institute, Washington, 2012.
[31] Richardson, M O W, Wisheart, M J. Review of low-velocity impact properties of composite materials[J]. Composites Part A (Applied Science and Manufacturing), 1996, 27A(12): 1123–1131.
[32] Jones, N, Birch, R S. Influence of internal pressure on the impact behavior of steel pipelines[J]. Journal of Pressure Vessel Technology, 1997, 119(1): 17.
[33] Abramowicz, W, Jones, N. Dynamic axial crushing of square tubes[J]. International Journal of Impact Engineering, 1984, 2(2): 179–208.
[34] 郭丹. 聚合物夹芯梁准静态局部压入行为分析[D]. 西安: 西安交通大学, 2014.
GUO Dan. Indentation behavior of sandwich beams with polymeric foams. Xian: Xi’an Jiaotong University, 2014.
[35] Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams[J]. Journal of the mechanics and physics of solids, 2000, 48: 1253-1283.
[36] GB/T 50538-2010《埋地钢质管道防腐保温层技术标准》国家标准发布[S]. 煤气与热力, 2011, 31(1):19-19.
GB/T50538-2010, Technical standard for anti-corrosion and insulation coatings of buried steel pipeline[S]. Gas & Heat, 2011, 31(1):19-19.
[37] Taherkhani A, Sadighi M, Vanini A S, et al. An experimental study of high-velocity impact on elastic–plastic crushable polyurethane foams[J]. Aerospace Science and Technology, 2016, 50: 245-255.
[38] Zarei H R, Ghamarian A. Experimental and Numerical Crashworthiness Investigation of Empty and Foam-Filled Thin-Walled Tubes with Shallow Spherical Caps[J]. Experimental Mechanics, 2013, 49(2): 199-211.
[39] Wang Y H, Pokharel R, Lu J Y, et al. Experimental, numerical, and analytical studies on polyurethane foam-filled energy absorption connectors under quasi-static loading[J]. Thin-Walled Structures, 2019, 144: 106257.1-106257.12.
 

PDF(4150 KB)

Accesses

Citation

Detail

段落导航
相关文章

/