4-1型柔索驱动并联机器人稳定性度量及其灵敏度分析

刘鹏1,2,曹现刚1,张旭辉1,乔心州1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 180-188.

PDF(1295 KB)
PDF(1295 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 180-188.
论文

4-1型柔索驱动并联机器人稳定性度量及其灵敏度分析

  • 刘鹏1,2,曹现刚1,张旭辉1,乔心州1
作者信息 +

Stability and sensitivity of a 4-1 type cable-driven parallel robot

  • LIU Peng1,2,CAO Xiangang1,ZHANG Xuhui1,QIAO Xinzhou1
Author information +
文章历史 +

摘要

4-1型柔索驱动并联机器人性能优越具有较好的应用潜力,但评价并保证机器人末端执行器的稳定性任务艰巨。为此,本文对4-1型柔索驱动并联机器人的稳定性度量方法进行研究,提出一种融合机器人末端执行器位置和约束力影响因子的稳定性度量方法及其指标;建立4-1型柔索驱动并联机器人稳定性灵敏度分析模型,探索并分析末端执行器位置和柔索驱动力等因素对机器人稳定性的影响程度,提出采用关联度研究和分析末端执行器位置和柔索驱动力等参数对机器人稳定性的影响程度。以4索驱动拣矸机器人为例,对所建立的稳定性度量模型及其敏感度分析模型进行仿真研究,得出了能够保证拣矸机器人末端抓斗满足预定稳定性要求的位置点集;稳定性敏感度研究结果表明:拣矸机器人稳定性对驱动力影响因素的敏感度较大,关联度为0.9387-0.9647;其次为位置影响因素,关联度为 0.5439-0.7743。

Abstract

A 4-1 cable-driven parallel robot (CDPR) has excellent performance and good application potential, but it is crucial to evaluate and ensure the stability of the robot. Therefore, in this paper, the stability measure method of the robot is investigated, and furthermore, a stability measurement method with the position influencing factors and the cable tension influencing factors is proposed. The stability sensitivity analysis model for the robot is established, and the influence degree of the positions of the end-effector and cable tensions on the stability is explored and analyzed. The correlation degree is proposed to investigate and measure the influence degree of the factors on the stability for the robot. The presented stability evaluation model and sensitivity analysis model are simulated on a cable-driven gangue sorting robot, and the position set of the end-effector where the end-effector meets the predetermined stability requirements is obtained. The results show that the stability of the cable-driven gangue sorting robot is sensitive to the cable tensions, and in more detail, the correlation degrees of the cable tensions are 0.9387-0.9647; and while, the correlation degrees of the positons of the end-effector are 0.5439-0.7743.

关键词

(小五黑体)柔索驱动并联机器人 / 点质量 / 稳定性 / 灵敏度

Key words

cable-driven parallel robot / point mass / stability / sensitivity

引用本文

导出引用
刘鹏1,2,曹现刚1,张旭辉1,乔心州1. 4-1型柔索驱动并联机器人稳定性度量及其灵敏度分析[J]. 振动与冲击, 2023, 42(14): 180-188
LIU Peng1,2,CAO Xiangang1,ZHANG Xuhui1,QIAO Xinzhou1. Stability and sensitivity of a 4-1 type cable-driven parallel robot[J]. Journal of Vibration and Shock, 2023, 42(14): 180-188

参考文献

[1] QIAN S, ZI B, SHANG W W, et al. A Review on Cable-driven Parallel Robots[J]. Chinese Journal of Mechanical Engineering, 2018, 31(04):37-47.
[2] WANG X G, PENG M J, HU Z H, et al. Feasibility investigation of large-scale model suspended by cable-driven parallel robot in hypersonic wind tunnel test[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(13): 2375-2383.
[3] DUAN B Y. A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis[J]. Mechatronics, 1999,9 (1):53–64.
[4] BARNETT E, GOSSELIN C. Large-scale 3D printing with a cable-suspended robot[J]. Additive Manufacturing, 2015, 7: 27-44.
[5] KAWAMURA S, KINO H, WON C, et al. High-speed manipulation by using parallel wire-driven robots[J]. Robotica, 2000, 18: 13 - 21. 
[6] 苏宇, 仇原鹰, 王龙. 高速绳牵引并联摄像机器人冗余驱动力优化求解[J]. 西安电子科技大学学报, 2014, 41 (2): 90-96.
SU Yu, QIU Yuan-ying, WANG Long. Optimization of redundant driving force for high-speed cable-driven parallel camera robots[J]. Journal of Xidian University, 2014, 41 (2): 90-96.
[7] MERLET, J P. Managing the Redundancy of N−1 Wire-Driven Parallel Robots. In: Lenarcic, J., Husty, M. (eds) Latest Advances in Robot Kinematics[M]. Springer, Dordrecht, 2012. 
[8] MERLET J P. The Forward Kinematics of the 4-1 Cable-Driven Parallel Robot with Non Elastic Sagging Cables. In: Lenarčič, J., Siciliano, B. (eds) Advances in Robot Kinematics 2020. ARK 2020. Springer Proceedings in Advanced Robotics[M]. Springer, Cham,2021.  
[9] CARO S, MERLET J P. Failure Analysis of a Collaborative 4-1 Cable-Driven Parallel Robot. In: Pisla, D., Corves, B., Vaida, C. (eds) New Trends in Mechanism and Machine Science. EuCoMeS 2020. Mechanisms and Machine Science[M]. Springer, Cham,2020.
[10] MERLET J P. The kinematics of the redundant N − 1 wire driven parallel robot[C]//2012 IEEE International Conference on Robotics and Automation, 2012, 2313-2318.  
[11] LIU P, MA H W, ZHANG X H, et al. On the Equivalent Position Workspace for a Coal Gangue Picking Robot[C]//Proceedings of 2019 3rd International Conference on Artificial Intelligence, Automation and Control Technologies (AIACT 2019). IOP Publishing, 2019, 641-648.
[12] 刘鹏,马宏伟,乔心州,等.柔索驱动并联机器人最小索拉力等值曲面研究[J].西安科技大学学报,2020,40(05):797-804. 
LIU Peng, MA Hongwei, QIAO Xinzhou, et al. On the contour surfaces of minimum tensions for a cable-driven coal-gangue picking robot[J]. Journal of xi’an university of science and technology, 2020,40(05):797-804.
[13] BEHZADIPOUR S, KHAJEPOUR A. Stiffness of Cable-based Parallel Manipulators with Application to Stability Analysis[J]. Journal of Mechanical Design, 2006,128(1): 303-310.
[14] BOSSCHER P M, EBERT-UPHOFF I. A Stability Measure for Underconstrained Cable-Driven robots[C]//IEEE International Conference on Robotics and Automation. New Orleans, LA: IEEE, 2004. 
[15] LIU P, QIU Y Y, SU Y, et al. On the Minimum Cable Tensions for the Cable-Based Parallel Robots[J]. Journal of Applied Mathematics, 2014, 2014: 350492. 
[16] 刘鹏,仇原鹰.绳牵引摄像机器人的力位混合稳定性评价方法[J].西安电子科技大学学报, 2016,43(01):87-93.
LIU Peng, QIU Yuanying. Approach with a hybrid force-position property to assessing the stability for camera robots[J]. Journal of Xidian university, 2016, 43(01):87-93.
[17] LIU P, QIU Y Y, SU Y. A new hybrid force-position measure approach on the stability for a camera robot[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(14): 2508-2516. 
[18] 赵志刚,王砚麟,李劲松.多机器人协调吊运系统力位姿混合运动稳定性评价方法[J].哈尔滨工程大学学报, 2018, 39(01):148-155.
ZHAO Zhigang, WANG Yanlin, LI Jinsong. Appraise of dynamical stability of multi-robots cooperatively lifting system based on hybrid force-position-pose approach [J].Journal of Harbin Engineering University, 2018, 39(01):148-155.
[19] 李元松,王玉,朱冬林,等.边坡稳定性评价方法研究现状与发展趋势[J].武汉工程大学学报,2021, 43(04):428-435.
LI Yuansong, WANG Yu, ZHU Donglin. Research Status and Developmental Trends of Slope Stability Evaluation Method [J].Journal of Wuhan Institute of Technology, 2021, 43(04):428-435.
[20] 刘顺青, 洪宝宁, 徐奋强, 等.高液限土边坡稳定性影响因素的敏感性研究[J]. 防灾减灾工程学报2014, 34( 5):589-596.
LIU Shunqing, HONG Baoning, XU Fenqiang, et al. Sensitivity studies on factors influencing stability of high liquid limit soil slope[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(5): 589-596.
[21] WANG X N, YANG W C, GE Y, et al. The influence of shrinkage-reducing agent solution properties on shrinkage of cementitious composite using grey correlation analysis[J]. Construction and Building Materials,2020,264: 120194.
[22] DONG J Y, WAN S P. Max-Min and Min-Max Gray Association Degree-Based Method for Multiattribute Decision Making[J]. Journal of Intelligent Systems, 2015, 24(4): 525-531.
[23] WANG H, WANG L, YANG L, et al. Exploring the relationship between the dielectric properties and viability of human normal hepatic tissues from 10 Hz to 100 MHz based on grey relational analysis and BP neural network[J]. Computers in Biology and Medicine, 2021,134:104494.
[24] 刘鹏,乔心州. 大跨度完全约束空间3-DOF柔索驱动并联机器人稳定性灵敏度研究[J/OL].清华大学学报(自然科学版):1-11[2022-04-02].DOI:10.16511/j.cnki.qhdxxb.2022.26.004.
LIU Peng, QIAO Xinzhou. Stability sensitivity of a completely restrained 3-DOF cable-driven parallel robot with four long-span cables[J/OL]. Journal of Tsinghua University (Science and technology) 1-11[2022-04-02].DOI:10.16511/j.cnki.qhdxxb.2022.26.004.
[25] BOSSCHER P M. Disturbance Robustness Measures and Wrench-Feasibile Workspace Generation Techniques for Cable-Driven Robots[D]. Atlanta: Georgia Institute of Technology, 2004.
[26] 苏宇, 仇原鹰, 王龙. 高速绳牵引并联摄像机器人冗余驱动力优化求解[J]. 西安电子科技大学学报, 2014, 41 (2): 90-96.
Su Yu, Qiu Yuanying, Wang Long. Optimization of redundant driving force for high-speed cable-driven parallel camera robots[J]. Journal of Xidian University, 2014, 41 (2): 90-96.
[27] 刘欣. 两种并联机器人的机构性能分析与运动控制研究[D]. 西安:西安电子科技大学, 2009.
Liu Xin. On the Mechanism Performance Analysis and Motion Control of the Two Types of Parallel Manipulators[D]. Xi’an: PhD, Dissertation of Xidian University, 2009.
[28] GOSSELIN C, GRENIER M. On the determination of the force distribution in overconstrained cable-driven parallel mechanisms[J]. Meccanica, 2011, 46(1): 3–15.
[29] Deng. J L. Introduction to grey system theory[J]. The Journal of Grey System, 1989, 1(1):1–24.    
[30] ZHAO T, YAN Y F, HE Z Q, et al. Influence of multi-structure optimization on the comprehensive performance of micro-cylindrical combustor inserting with spiral fin by using grey relational analysis and analysis of variance[J]. International Journal of Hydrogen Energy,2021,46(55): 28327-28337.
[31] SHAN Z Y, LONG J Q, YU P, et al. Lightweight optimization of passenger car seat frame based on grey relational analysis and optimized coefficient of variation[J]. Structural and Multidisciplinary Optimization, 2020: 1-27.  

PDF(1295 KB)

Accesses

Citation

Detail

段落导航
相关文章

/