结构动力方程的一种自适应步长增维精细积分法

黄宇熙1,崔颖2,杨国刚1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 198-203.

PDF(1428 KB)
PDF(1428 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 198-203.
论文

结构动力方程的一种自适应步长增维精细积分法

  • 黄宇熙1,崔颖2,杨国刚1
作者信息 +

Adaptive time-stepping increment-dimensional precise integration method for solving structural dynamic equations

  • HUANG Yuxi1,CUI Ying2,YANG Guogang1
Author information +
文章历史 +

摘要

增维精细积分法是一种求解结构动力方程的高精度逐步积分算法,其步长的选取会对计算精度产生极大的影响,在实际应用中存在难以确定合适步长的问题。为满足实际工程中对计算精度和效率的要求,提出了一种计算误差的估计方法,并以估计误差和迭代收敛速度为基准,建立了一种自适应步长增维精细积分法。针对三种结构动力方程的算例结果表明:在计算各类线性及非线性振动问题时,该方法均可以在保证计算精度的前提下快速有效地控制算法的计算步长,并且仅需较少的额外计算消耗,显著提高了增维精细积分法的计算效率,使得该方法在求解结构动力方程时更具计算优势和实用价值。

Abstract

The increment-dimensional precise integration method is a high-precision step-by-step integration algorithm for solving structural dynamic equations. The step size will have a great influence on the calculation accuracy of the algorithm, and it is difficult to determine the appropriate step size in practical applications. To meet the requirements of accuracy and efficiency in the calculation, an estimation method of calculation error was proposed, and an adaptive time-stepping increment-dimensional precise integration method was established based on the estimation error and iterative convergence speed. The numerical results of three structural dynamic equations show that when considering all kinds of linear and nonlinear vibration problems, the proposed method can quickly and effectively control the calculation step size under the premise of ensuring the calculation accuracy, and only requires less additional calculation consumption, which significantly improves the efficiency of the increment-dimensional precise integration method, making the method more computationally advantageous and practical in solving structural dynamic equations.

关键词

增维精细积分法 / 步长自适应 / 结构动力方程 / 误差估计

Key words

increment-dimensional precise integration / adaptive time-stepping / structural dynamic equation / error estimate

引用本文

导出引用
黄宇熙1,崔颖2,杨国刚1. 结构动力方程的一种自适应步长增维精细积分法[J]. 振动与冲击, 2023, 42(14): 198-203
HUANG Yuxi1,CUI Ying2,YANG Guogang1. Adaptive time-stepping increment-dimensional precise integration method for solving structural dynamic equations[J]. Journal of Vibration and Shock, 2023, 42(14): 198-203

参考文献

[1] 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994, 34(2): 131-136.
ZHONG Wan-xie. On precise time-integration method for structural dynamics [J]. Journal of dalian university of technology, 1994, 34(2): 131-136.
[2] 谭述君, 钟万勰. 非齐次动力方程Duhamel项的精细积分[J]. 力学学报, 2007, 39(03): 374-381.
TAN Shu-jun, ZHONG Wan-xie. Precise integration method for Duhamel terms arising from non-homogenous dynamic systems [J]. Chinese journal of theoretical and applied mechanics, 2007, 39(03): 374-381.
[3] 杨永, 李海滨. 基于对偶神经网络的动力方程精细积分法[J]. 振动与冲击, 2022, 41(16): 188-193.
YANG Yong, LI Hai-bin. A precise integration method for dynamic equations based on dual neural networks [J]. Journal of Vibration and shock, 2022, 41(16): 188-193.
[4] 王永, 马骏, 李靖翔, 等. 非齐次动力学方程的一种精细积分单步方法[J]. 计算力学学报, 2020, 37(2): 212-217.
WANG Yong, MA Jun, LI Jing-xiang, et al. A precise integration single-step method for nonhomogeneous dynamic equations [J]. Chinese journal of computational mechanics, 2020, 37(2): 212-217.
[5] 富明慧,廖子菊,刘祚秋. 结构动力方程的样条精细积分法[J]. 计算力学学报, 2009, 26(3): 379-384.
FU Ming-hui, LIAO Zi-ju, LIU Zhi-qiu. Spline precise time-integration of structural dynamic analysis [J]. Chinese journal of computational mechanics, 2009, 26(3): 379-384.
[6] 顾元宪, 陈飚松, 张洪武. 结构动力方程的增维精细积分法[J]. 力学学报, 2000, 32(4): 10.
GU Yuan-xian, CHEN Biao-song, ZHANG Hong-wu. Precise time-integration with dimension expanding method [J]. Chinese journal of theoretical and applied mechanics, 2000, 32(4): 10.
[7] 张素英, 邓子辰. 非线性动力方程的增维精细积分法[J]. 计算力学学报, 2003, 20(4): 423-426.
ZHANG Su-ying, DENG Zi-chen. Increment-dimensional precise integration method for nonlinear dynamic equation [J]. Chinese journal of computational mechanics, 2003, 20(4): 423-426.
[8] 梅树立, 张森文, 徐加初, 等. 非线性动力学方程的自适应精细积分[J]. 暨南大学学报(自然科学版), 2005(03): 319-323.
MEI Shu-li, ZHANG Sen-wen, XU Ru-chu, et al. Adaptive precise integration algorithm for nonlinear dynamical equation [J]. Journal of Jinan university (natural science), 2005, 26(03): 319-323.
[9] 王海波, 纪海潮. 非线性动力方程精细积分法的自适应步长研究[J]. 计算力学学报, 2021, 38(03): 371-376.
WANG Hai-bo, JI Hai-chao. Study on adaptive step size of precise integration method for nonlinear dynamic equation [J]. Chinese journal of computational mechanics, 2021, 38(03): 371-376.
[10] 李健, 高广军, 张洁. 离散精细时程积分的自适应求积算法研究[J]. 应用力学学报, 2014, 31(04): 502-505+2.
LI Jian, GAO Guang-jun, ZHANG Jie. Research of adaptive quadrature algorithm for discrete precise time-integration method [J]. Chinese journal of applied mechanics, 2014, 31(04): 502-505+2.
[11] 任伟, 杜铁钧. 定常结构动力方程增维精细积分法求解的注记[J]. 杭州电子科技大学学报, 2005, 25(1): 41-43.
REN Wei, DU Tie-jun. A note on increment-dimensional precise integration method for invariant dynamic equation [J]. Journal of Hangzhou Dianzi university, 2005, 25(1): 41-43.
[12] 葛根, 王洪礼, 谭建国. 多自由度非线性动力方程的改进增维精细积分法[J]. 天津大学学报, 2009, 42(2): 113-117.
GE Gen, WANG Hong-li, TAN Jian-guo. Improved increment-dimensional precise integration method for the nonlinear dynamic equation with multi-degree-of-freedom [J]. Journal of Tianjin university, 2009, 42(2): 113-117.
[13] 张继锋, 邓子辰. 结构动力方程的增维分块精细积分法[J]. 振动与冲击, 2008, 27(12).
ZHANG Ji-fneg, DENG Zi-chen. Dimensional increment and partitioning precise integration method for structural dynamic equation [J]. Journal of vibration and shock, 2008, 27(12).
[14] 张庆云,滕圣刚. 一种提高增维精细积分法计算精度的方法[J]. 科学技术与工程, 2010, 10(31): 7627-7630.
ZHANG Qing-yun, TENG Sheng-gang. A method to improve the calculating accuracy of increment-dimensional precise integration method [J]. Science technology and engineering, 2010, 10(31): 7627-7630.
[15] 王海波, 陈晋, 李少毅. 用于非线性动力分析的一种高效精细积分单步法[J]. 振动与冲击, 2017, 36(15): 158-162+229.
WANG Hai-bo, CHEN Jin, LI Shao-yi. An efficient precise integration single-step method for nonlinear dynamic analysis [J]. Journal of vibration and shock, 2017, 36(15): 158-162+229.
[16] 崔雪娜, 王焕定. 刚度解析表达时高阶单步法的研究[J]. 地震工程与工程振动, 2006(4): 63-67.
CUI Xue-na, WANG Huan-ding. Research on a high order single step method for analytic expression of stiffness [J]. Earthquake engineering and engineering vibration, 2006(4): 63-67.

PDF(1428 KB)

367

Accesses

0

Citation

Detail

段落导航
相关文章

/