板式轨道充填层自密实混凝土阻尼性能研究

陈俊豪1,谢友均1,曾晓辉1,刘锦辉2,郭桃明2,管吉波3,龙广成1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 211-219.

PDF(2536 KB)
PDF(2536 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 211-219.
论文

板式轨道充填层自密实混凝土阻尼性能研究

  • 陈俊豪1,谢友均1,曾晓辉1,刘锦辉2,郭桃明2,管吉波3,龙广成1
作者信息 +

Damping characteristics of filling layer self-compacting concrete applied in a slab track system

  • CHEN Junhao1,XIE Youjun1,ZENG Xiaohui1,LIU Jinhui2,GUO Taoming2,GUAN Jibo3,LONG Guangcheng1
Author information +
文章历史 +

摘要

阻尼性能对土木工程结构的动力行为有重要影响,目前尚未见针对地铁板式轨道填充层自密实混凝土(self-compacting concrete ,SCC)阻尼性能的研究。本文采用MTS疲劳试验机,研究了不同应力幅值、橡胶掺量和尺寸对SCC滞回耗能和损耗因子的影响规律及变化机理,并对SCC的滞回耗能进行数值模拟。结果表明:SCC的滞回耗能随应力幅值的增加先慢后快的增大,这与其损伤演变和动弹性模量退化密切相关,内部缺陷的能量耗散是SCC的主要阻尼机制;滞回耗能与应力幅值呈幂函数关系,其中SCC的幂指数值最小,表明SCC的非线性程度最低;橡胶显著增大了SCC的阻尼性能,在相同的应力幅值下,SCC的滞回耗能随着橡胶掺量的增加和尺寸的降低而增大;Kelvin模型可用来模拟SCC在循环荷载下的滞回耗能,计算值与试验结果吻合良好。

Abstract

Damping properties have an important influence on the dynamic behavior of civil engineering structures. However, there has been no research on the damping performance of filling layer self-compacting concrete (SCC) of subway slab track. In this paper, the MTS test system was used to study the influence law and variation mechanism of different stress amplitude, rubber content and size on the hysteretic energy and loss factor of SCC, and the hysteretic energy of SCC was numerically simulated. The results showed that the hysteretic energy of SCC increased first slowly and then rapidly with the increase of stress amplitude, which was closely related to its damage evolution and dynamic elastic modulus degradation, and the energy dissipation of internal defects was the main damping mechanism of SCC; The hysteretic energy was a power function relationship with the stress amplitude, among them, the power exponent value of SCC was the smallest, indicating that the nonlinear degree of SCC was the lowest; Rubber significantly increased the damping performance of SCC. Under the same stress amplitude, the hysteresis energy of SCC increased with the increase of rubber content and the decrease of size. The Kelvin model can be used to simulate the hysteretic energy of SCC under cyclic loading, and the theoretical value was in good agreement with the experimental value.

关键词

阻尼 / 填充层 / 自密实混凝土(SCC) / 滞回耗能 / Kelvin模型

Key words

damping / filling layer / self-compacting concrete (SCC) / hysteretic energy / Kelvin model

引用本文

导出引用
陈俊豪1,谢友均1,曾晓辉1,刘锦辉2,郭桃明2,管吉波3,龙广成1. 板式轨道充填层自密实混凝土阻尼性能研究[J]. 振动与冲击, 2023, 42(14): 211-219
CHEN Junhao1,XIE Youjun1,ZENG Xiaohui1,LIU Jinhui2,GUO Taoming2,GUAN Jibo3,LONG Guangcheng1. Damping characteristics of filling layer self-compacting concrete applied in a slab track system[J]. Journal of Vibration and Shock, 2023, 42(14): 211-219

参考文献

[1] LEI D, ZHANG P, HE J T, et al. Fatigue life prediction method of concrete based on energy dissipation[J]. Construction and Building Materials, 2017, 145(1): 419-425.
[2] 马昆林, 万镇昂, 龙广成, 等. 板式轨道充填层SCC疲劳损伤本构模型[J]. 铁道学报, 2020, 42(11): 139-145.
 MA Kunlin, WAN Zhen’ang, LONG Guangcheng, et al. Fatigue damage constitutive model of slab track filling layer SCC[J]. Journal of the China Railway Society, 2020, 42(11): 139-145.
[3] 龙广成, 杨振雄, 白朝能, 等. 荷载-冻融耦合作用下充填层自密实混凝土的耐久性及损伤模型[J]. 硅酸盐学报, 2019, 47(7): 855-864.
 LONG Guangcheng, YANG Zhenxiong, BAI Chaoneng, et al. Durability and damage constitutive model of filling layer self-compacting concrete subjected to coupling action of freeze-thaw cycles and load[J]. Journal of the Chinese Ceramic Society, 2019, 47(7): 855-864.
[4] 龙广成, 李宁, 谢友均, 等. 板式轨道充填层自密实混凝土的动态力学特性[J]. 铁道科学与工程学报, 2018, 15(6): 1364-1372.
LONG Guangcheng, LI Ning, XIE Youjun, Dynamic mechanical properties of filling layer self-compacting concrete applied in slab track system[J]. Journal of Railway Science and Engineering, 2018, 15(6): 1364-1372.
[5] AUGUSTI G. Dynamics of structures: Theory and applications to earthquake engineering[J]. Engineering Structures, 1995, 17(6): 337.
[6] SPENCE S, KAREEM A. Tall Buildings and Damping: A Concept-Based Data Driven Model[J]. Journal of Structural Engineering, 2013, 140(5): 155-164.
[7] 薛刚, 张宪法, 曹美玲. 考虑温度效应的橡胶混凝土阻尼耗能性能试验研究[J]. 振动与冲击, 2020, 39(19): 94-100.
XUE Gang, ZHANG Xianfa, CAO Meiling. Tests for damping energy-dissipation performance of rubber concrete considering temperature effect[J]. Journal of Vibration and Shock, 2020, 39(19): 94-100.
[8] LIU F, MENG L Y, NING G F, et al. Fatigue performance of rubber-modified recycled aggregate concrete (RRAC) for pavement[J]. Construction and Building Materials, 2015, 95(1): 207-217.
[9] SAKDIRAT K, LI Dan, Chen YU, et al. Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tire Crumb Rubber[J]. Materials, 2018, 11(7): 1169.
[10] LIU B D, YANG S Z, LI W L, et al. Damping dissipation properties of rubberized concrete and its application in anti-collision of bridge piers[J]. Construction and Building Materials, 2020, 236: 117286.
[11] GB175-2007, 通用硅酸盐水泥 [S]. 北京: 中华人民共和国质量监督检验检疫总局&中国国家标准化管理委员会, 2007.
[12] GB/T 1596-2017, 用于水泥和混凝土中的粉煤灰 [S]. 北京: 中华人民共和国质量监督检验检疫总局&中国国家标准化管理委员会, 2017.
[13] GB/T 18046-2017, 用于水泥、砂浆和混凝土中的粒化高炉矿渣粉 [S]. 北京:  中华人民共和国质量监督检验检疫总局&中国国家标准化管理委员会, 2017.
[14] TB/T3275-2018, 铁路混凝土[S]. 北京: 中国国家铁路局, 2018.
[15]  JGJ/T283-2012, 自密实应用技术规程[S]. 北京: 中华人民共和国住房和城乡建设部, 2012.
[16] ASTM C1611/C1611M-14, Standard Test Method for Slump Flow of Self-consolidating Concrete [S]. West Conshohocken: ASTM International, 2014.
[17] GB-T 50081-2019, 混凝土物理力学性能试验方法标准[S]. 北京: 中华人民共和国质量监督检验检疫总局&中国国家标准化管理委员会, 2019.
[18] 梅生启. 混凝土静动态粘弹性能研究[D]. 北京: 北京交通大学, 2019.
[19] 马林建, 刘基程, 张宁, 等. 循环荷载作用下珊瑚混凝土的阻尼特性[J]. 硅酸盐学报, 2020, 48(11): 1765-1770.
MA Linjian, LIU Jicheng, ZHANG Ning, et al. Damping Characteristics of Coral Concrete Under Cyclic Loading[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1765-1770.
[20] 苏力. 混凝土静动态粘弹性性能的理论及试验研究[D]. 北京: 北京交通大学, 2017.
[21] 肖建清, 冯夏庭, 丁德馨, 等. 常幅循环荷载作用下岩石的滞后及阻尼效应研究[J]. 岩石力学与工程学报, 2010, 29(8): 1677-1683.
XIAO Jianqing, FENG Xiating, DING Dexin, et al. Study of hysteresis and damping effects of rock subjected to constant amplitude cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1677-1683.
[22] LIANG C F, XIAO J Z, WANG C H, et al. Hysteretic energy and damping variation of recycled aggregate concrete with different cyclic compression loading levels[J]. Journal of Building Engineering, 2021, 44, 102936.
[23] NAJIM K B, HALL M R. Mechanical and dynamic properties of self-compacting crumb rubber modified concrete[J]. Construction and Building Materials, 2012, 27(1): 521-530.
[24] MEI S Q, SU L, LI P F, et al. Material Damping of Concrete under Cyclic Axial Compression[J]. Journal of Materials in Civil Engineering, 2018, 30(3): 1-10.
[25] JEARY A P.  Damping in structures [J]. Wind Eng. Ind. Aerod. 1997, 72:345–355.
[26] SIDDIKA A, MAMUN M A, ALYOUSEF R, et al. Properties and utilizations of waste tire rubber in concrete: A review [J]. Construction and Building Materials, 2019, 224(Nov. 10): 711-31.
[27] MAKRIS N, ZHANG Jian. Time‐domain viscoelastic analysis of earth structures[J]. Earthquake Engineering and Structural Dynamics, 2015, 29(6): 745-768.

PDF(2536 KB)

217

Accesses

0

Citation

Detail

段落导航
相关文章

/