Z24桥阻尼比长期变化影响因素及影响规律

尚志强1,2,夏烨3,孙利民3,4,5,辛公锋1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 287-295.

PDF(2204 KB)
PDF(2204 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 287-295.
论文

Z24桥阻尼比长期变化影响因素及影响规律

  • 尚志强1,2,夏烨3,孙利民3,4,5,辛公锋1,2
作者信息 +

Long-term characteristics of damping ratio of the Z24 bridge influenced by different factors

  • SHANG Zhiqiang1,2, XIA Ye3, SUN Limin3,4,5, XIN Gongfeng1,2
Author information +
文章历史 +

摘要

为研究Z24桥阻尼比长期变化的影响因素及影响规律,首先利用该桥长期监测数据,采用加速度时间序列语义分割获取了大量的加速度自由衰减响应,由指数衰减法得到了为期约10个月的一阶阻尼比识别结果。然后分析了结构温度、振动剧烈程度、结构损伤对阻尼比的影响规律。结果表明:Z24桥一阶阻尼比与结构温度具有极强的相关性,0℃以下时段,阻尼比随结构温度降低呈先增大后减小的非线性变化;0℃以上时段,阻尼比随结构温度升高而线性减小,二者相关系数最高可达0.98;环境激励(桥下通行车辆)与重物坠落激励下,阻尼比受振动剧烈程度的影响均无明显规律可循;阻尼比对各种结构损伤的存在与否亦无确切的指示性作用,由阻尼比获取更有效的损伤特征仍有待于进一步的研究。上述因素的影响规律应在结构振动控制设计、损伤识别等阻尼比应用场景中得到考虑,以提升结果的合理性与可靠性。

Abstract

To investigate long-term characteristics of damping ratio of Z24 bridge influenced by different factors, a time series semantic segmentation method was introduced to extract free attenuation data segments from monitored acceleration of Z24 bridge. Then, about 10-month damping ratio of 1st vibration mode was calculated using exponential attenuation method. Based on the calculated damping ratio, influences of three factors including temperature, vibration intensity, and structural damage were analyzed. The results show that there exists a strong correlation between the damping ratio of Z24 bridge and temperature variation. Specifically, the damping ratio exhibits an increasing trend followed by a decreasing trend after the temperature drops below 0℃, while the damping ratio exhibits a linearly decreasing trend after the temperature goes beyond 0℃, in which time the correlation coefficient even reaches 0.98. The vibration intensity presents little impact on the damping ratio under both of the excitation of vehicles passing below the bridge and the excitation of drop weight on the bridge. The structural damage also exhibits very limited influences on the damping ratio, thus further investigation is still required in the future to obtain effective damage features based on the identified damping ratio. The influences of the above factors should be considered in damping ratio-related applications including structural control and damage detection to achieve reasonable and reliable results.

关键词

Z24桥 / 桥梁结构健康监测 / 指数衰减法 / 阻尼比 / 影响因素

Key words

Z24 bridge / bridge structural health monitoring / exponential attenuation method / damping ratio / influencing factors

引用本文

导出引用
尚志强1,2,夏烨3,孙利民3,4,5,辛公锋1,2. Z24桥阻尼比长期变化影响因素及影响规律[J]. 振动与冲击, 2023, 42(14): 287-295
SHANG Zhiqiang1,2, XIA Ye3, SUN Limin3,4,5, XIN Gongfeng1,2. Long-term characteristics of damping ratio of the Z24 bridge influenced by different factors[J]. Journal of Vibration and Shock, 2023, 42(14): 287-295

参考文献

[1] Cao M, Sha G, Gao Y, Ostachowicz W. Structural damage identification using damping: a compendium of uses and features[J]. Smart Materials and Structures, 2017. Vol.26 (4): 043001.
[2] Modena C, Sonda D, Zonta D. Damage localization in reinforced concrete structures by using damping measurements[C]. Damage Assessment of Structures(DAMAS 99). Dublin :DAMAS ,1999.
[3] 招商局重庆交通科研设计院有限公司. 公路桥梁抗震设计规范: JTG/T 2231-01—2020[S]. 北京:中华人民共和国交通运输部, Editor. 2020.
[4] 同济大学. 公路桥梁抗风设计规范: JTG/T 3360-01—2018 [S]. 北京:中华人民共和国交通运输部, Editor. 2019.
[5] 长安大学. 公路桥梁荷载试验规程: JTG/T J21-01—2015[S].北京:中华人民共和国交通运输部, Editor. 2016年04月01日.
[6] Li P, Wang Y, Liu B, Su L. Damping properties of highway bridges in China[J]. Journal of Bridge Engineering, 2014. Vol.19 (5): 04014005.
[7] Chen G W, Omenzetter P, Beskhyroun S. Modal systems identification of an eleven-span concrete motorway off-ramp bridge using various excitations[J]. Engineering Structures, 2021. Vol.229: 111604.
[8] Gomez H C, Ulusoy H S, Feng M Q. Variation of modal parameters of a highway bridge extracted from six earthquake records[J]. 2013. Vol.42 (4): 565-579.
[9] 李湛, 李鹏飞, 姜震宇, 韦韩. 不同激励模式下桥梁实测阻尼比差异[J]. 振动与冲击, 2016. Vol.35 (03): 62-67.
LI Zhan, LI Pengfei ,JIANG Zhenyu ,et al. Difference of bridge damping ratio under different excitations[J].Journal of Vibration and Shock, 2016, 35(3): 62-67.
[10] Rebelo C, da Silva L S, Rigueiro C, Pircher M. Dynamic behaviour of twin single-span ballasted railway viaducts—Field measurements and modal identification[J]. Engineering Structures, 2008. Vol.30 (9): 2460-2469.
[11] Ülker-Kaustell M, Karoumi R. Application of the continuous wavelet transform on the free vibrations of a steel–concrete composite railway bridge[J]. Engineering structures, 2011. Vol.33 (3): 911-919.
[12] Zhang Q W, Fan L C, Yuan W C. Traffic-induced variability in dynamic properties of cable-stayed bridge[J]. Earthquake Engineering & Structural Dynamics ,2002. Vol.31 (11): 2015-2021.
[13] Magalhães F, Cunha A, Caetano E. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection[J]. Mechanical Systems and Signal Processing, 2012. Vol.28: 212-228.
[14] Hwang D, Kim S, Kim H-K. Long-Term Damping Characteristics of Twin Cable-Stayed Bridge under Environmental and Operational Variations[J]. Journal of Bridge Engineering, 2021. Vol.26 (9): 04021062.
[15] Magalhães F, Cunha Á, Caetano E, Brincker R. Damping estimation using free decays and ambient vibration tests[J]. Mechanical Systems and Signal Processing, 2010. Vol.24 (5): 1274-1290.
[16] 秦世强, 康俊涛, 孔凡. 桥梁工作模态分析中阻尼比识别的离散性研究[J]. 振动、测试与诊断, 2016(1): 42-48.
     QIN Shiqiang,KANG Juntao,KONG Fan. Study on the discreteness of damping ratio identified from operational modal analysis of bridge structure[J]. Journal of Vibration,Measurement and Diagnosis, 2016(1): 42-48.
[17] Krämer C, De Smet C, De Roeck G. Z24 bridge damage detection tests[C]. IMAC 17, the International Modal Analysis Conference. 1999. Society of Photo-optical Instrumentation Engineers.
[18] Krämer C, De Smet C, Peeters B. Comparison of ambient and forced vibration testing of civil engineering structures[C]. Proceedings of IMAC. 1999.
[19] Peeters B. System identification and damage detection in civil engeneering[D].Heverlee: KU Leuven Structural Mechanics Section, 2000.
[20] Zhou Y, Sun L. Effects of environmental and operational actions on the modal frequency variations of a sea-crossing bridge: A periodicity perspective[J]. Mechanical Systems and Signal Processing, 2019. Vol.131: 505-523.
[21] Serker N H M K, Wu Z. Temperature sensitivity assessment of vibration-based damage identification techniques[J]. SDHM Structural Durability and Health Monitoring, 2009. Vol.5 (2): 87-107.
[22] Alampalli S. Influence of in-service environment on modal parameters[C]. Proceedings-SPIE the international society for optical engineering. 1998. Citeseer.
[23] 孙利民, 尚志强, 夏烨. 大数据背景下的桥梁结构健康监测研究现状与展望[J]. 中国公路学报, 2019. Vol.32 (11): 1-20.
    SUN Limin,SHANG Zhiqiang,XIA Ye. Development and prospect of bridge structural health monitoring in the context of big data[J]. China Journal of Highway and Transport 2019, 32 (11): 1-20.
[24] Thoma M. A Survey of Semantic Segmentation[J]. arXiv pre-print server, 2016.
[25] Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J J a p a. A review on deep learning techniques applied to semantic segmentation[J]. 2017.
[26] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]. International Conference on Medical image computing and computer-assisted intervention. 2015. Springer.
[27] Shang Z, Xia Y, Chen L, Sun L. Damping ratio identification using attenuation responses extracted by time series semantic segmentation[J]. Mechanical Systems and Signal Processing, 2022. Vol.180: 109287.
[28] Ray W C, Joseph P. Dynamics of structures[M]. Berkeley, CA, USA: Computers and Structures. 2003.
[29] 闵志华, 孙利民, 仲政. 环境温度对斜拉桥动力特性的影响分析[J]. 同济大学学报(自然科学版), 2011. Vol.39 (04): 488-494.
    MIN Zhihua,SUN Limin,ZHONG Zheng. Effect analysis of environmental temperature on dynamic properties of cable-stayed bridge[J]. Journal of Tongji University(Natural Science), 2011,39 (4): 488-494.
[30] 周毅, 孙利民, 谢谟文, 乔兰. 桥梁模态频率与运营环境作用的相关性[J]. 工程科学学报, 2018. Vol.40 (3): 276-284.
ZHOU Yi,SUN Limin,XIE Mowen,et al. Correlation of modal frequency variation for a bridge with operational and environmental actions[J]. Chinese Journal of Engineering, 2018,40 (3): 276-284.
 [31] Peeters B, De Roeck G. One‐year monitoring of the Z24‐Bridge: environmental effects versus damage events[J]. Earthquake engineering & structural dynamics, 2001. Vol.30 (2): 149-171.
[32] Farrar C R, Duffey T A, Doebling S W, Nix D A. A statistical pattern recognition paradigm for vibration-based structural health monitoring[J]. Structural Health Monitoring, 1999. Vol.2000: 764-773.

PDF(2204 KB)

Accesses

Citation

Detail

段落导航
相关文章

/