基于扰动观测器的铆接机器人轨迹跟踪控制

李宗刚1,2,李龙雄1,2,杜亚江1,2,陈引娟1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 296-305.

PDF(1936 KB)
PDF(1936 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 296-305.
论文

基于扰动观测器的铆接机器人轨迹跟踪控制

  • 李宗刚1,2,李龙雄1,2,杜亚江1,2,陈引娟1,2
作者信息 +

Disturbance observer based trajectory tracking control for a riveting robot

  • LI Zonggang1,2, LI Longxiong1,2, DU Yajiang1,2, CHEN Yinjuan1,2
Author information +
文章历史 +

摘要

为解决铆接机器人工作时外部干扰造成系统抖震大,轨迹跟踪精度较低问题,设计一种扰动观测器与分数阶滑模控制器组合的自适应控制方法。首先,通过引入时延估计策略建立铆接机器人的局部动力学模型,利用扰动观测器实时观测系统模型所受的可见干扰,其次,针对系统产生的抖震问题,设计分数阶滑模面替代传统滑模控制,采用新型趋近律使系统在切换面上能够连续平稳运动,针对系统所受的不可见干扰,设计自适应策略实现对外部干扰的完全补偿。最后通过Lyapunov函数证明所设计控制器的有效性。以三自由度机器人进行仿真及实体实验,结果表明,相较于分数阶滑模控制,采用本文控制器后机器人各关节的追踪误差峰值分别下降了50%、59%和63%,从而验证了该控制器不仅能有效消除系统所受较大干扰产生的抖震问题,而且提高了铆接机器人作业时的鲁棒性和轨迹跟踪精度。

Abstract

In order to solve the problem of higher chatter and lower trajectory tracking accuracy caused by external disturbances during the operation of the riveting robot, an adaptive control method combining a disturbance observer and a fractional-order sliding mode controller is designed. Firstly, the local dynamics model of the riveting robot is established by introducing the time delay estimation strategy, and the visible disturbances to the system model are observed in real time by using the disturbance observer, and secondly, the fractional-order sliding mode surface is designed to replace the traditional sliding mode control for the chatter, and the new convergence law is used to make the system move continuously and smoothly on the switching surface, and the adaptive strategy is designed to fully compensate for the external disturbances. Finally, the effectiveness of the designed controller is demonstrated by the Lyapunov function. The results show that the peak tracking errors of each joint of the robot are reduced by 50%, 59% and 63% respectively, compared with the fractional-order sliding mode control, the controller can not only effectively eliminate the chattering problem caused by the large interference of the system, but also improve the robustness and trajectory tracking accuracy of the riveting robot.

关键词

铆接机器人 / 轨迹跟踪 / 时延估计 / 扰动观测器 / 分数阶滑模控制

Key words

riveting robot / trajectory tracking / time-delay estimation(TDE) / disturbance observer(DOB) / fractional-order sliding mode control(FOSMC)

引用本文

导出引用
李宗刚1,2,李龙雄1,2,杜亚江1,2,陈引娟1,2. 基于扰动观测器的铆接机器人轨迹跟踪控制[J]. 振动与冲击, 2023, 42(14): 296-305
LI Zonggang1,2, LI Longxiong1,2, DU Yajiang1,2, CHEN Yinjuan1,2. Disturbance observer based trajectory tracking control for a riveting robot[J]. Journal of Vibration and Shock, 2023, 42(14): 296-305

参考文献

[1] 姜春英,牛祥鑫,张诚然,等. 机器人航空铆接的视觉定位方法研究 [J]. 航空制造技术,2018, 61(04):55-59.
    JIANG Chunying, NIU Xiangxin, ZHANG Cheng Ran, et al. Research on visual positioning method for robot aeronautical riveting [J]. Aeronautical Manufacturing Technology, 2018, 61(04):55-59.
[2] 战强,陈祥臻. 机器人钻铆系统研究与应用现状 [J]. 航空制造技术, 2018, 61(04):24-30.
ZHAN Qiang, CHEN Xiangzhen. Research status of robot drilling and riveting system and its aApplications [J]. Aeronautical Manufacturing Technology, 2018, 61(04):24-30.
[3] 万凯歌,吴爱国,董娜,等. 3-DOF空间机器人新型滑模轨迹跟踪控制 [J]. 中南大学学报(自然科学版), 2017, 48(12):3248-3255.
    WAN Kaige, WU Aiguo, DONG Na, et.al. A novel sliding mode controller for trajectory tracking of 3 DOF spatial robot manipulators [J]. Journal of Central South University (Science and Technology), 2017, 48(12):3248-3255.
[4] 吴爱国, 刘海亭, 董娜. 机械臂神经网络非奇异快速终端滑模控制 [J]. 农业机械学报, 2018, 49(02):395-404+240.
    WU Aiguo, LIU Haiting, DONG Na. Nonsingular fast terminal sliding mode control of robotic manipulators based on neural networks [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(02):395-404+240.
[5] 席宝成, 郭宇飞, 王志刚,等. 基于分段PD控制的振动基弹药传输机器人轨迹跟踪控制 [J]. 振动与冲击, 2021, 40(04):283-292.
    XI Baocheng, GUO Yufei, WANG Zhigang, et.al. Trajectory tracking control of a vibration-based ammunition transmission manipulator based on piecewise PD control [J]. Journal of Vibration and Shock, 2021, 40(04):283-292.
[6] Chen S B, Beigi A, Yousefpour A, et.al. Recurrent neural network-based robust nonsingular sliding mode control with input saturation for a nonholonomic spherical robot [J]. IEEE Access, 2020, 8:188441-188453.
[7] Mai T. Hybrid adaptive tracking control method for mobile manipulator robot based on proportional integral derivative technique [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(22):6463-6480.
[8] SU C J, ZHANG M, ZHANG S, et.al. Adaptive coordinated motion constraint control for cooperative multi-manipulator systems [J]. International Journal of Advanced Manufacturing Technology, 2022, 119(7-8):4203-4218.
[9] WANG Y C, ZHANG Z J, LI Ci, et.al. Adaptive incremental sliding mode control for a robot manipulator [J]. Mechatronics, 2022, 82.
[10] 余峰, 陈新元. N自由度柔性机器人通用的动力学建模方法研究 [J]. 振动与冲击, 2020, 39(16):103-111.
    YU Feng, CHEN Xinyuan. A study on a general dynamic modeling method for N-degree of freedom flexible manipulators [J]. Journal of Vibration and Shock, 2020, 39(16):103-111.
[11] PAN H, ZANG G, Ouyang H, et.al. Novel fixed-time nonsingular fast terminal sliding mode control for second-order uncertain systems based on adaptive disturbance observer [J]. IEEE Access, 2020, 8:126615-126627.
[12] 韩俊庆, 吴爱国, 董娜. 基于滑模干扰观测器的机器人终端滑模控制 [J]. 中南大学学报(自然科学版), 2020, 51(10):2749-2757.
    HAN Junqing, WU Aiguo, DONG Na. Terminal sliding model control for robotic manipulator based on sliding mode disturbance obeserve [J]. Journal of Central South University (Science and Technology), 2020, 51(10):2749-2757.
[13] YANG J, CHEN L, Qi Y M, et.al. Discrete perturbation-immunity neural network for dynamic constrained redundant robot control [J]. IEEE Access, 2020, 8:84490-84500.
[14] 鲍丹, 侯保林. 基于深度学习的单自由度机器人定位可靠性估计 [J]. 振动与冲击, 2021, 40(15):246-252+283.
    BAO Dan, HOU Baolin. Positioning reliability estimation of SDOF manipulator based on deep learning. [J]. Journal of Vibration and Shock, 2021, 40(15):246-252+283.
[15] BAEK J, JIN M L, HAN S. A new adaptive sliding-mode control scheme for application to robot manipulators [J]. IEEE Transactions on Industrial Electronics, 2016, 63(6):3628-3637.
[16] LEE J, CHANG P H, JIN M L. Adaptive integral sliding mode control with time-delay estimation for robot manipulators [J]. IEEE Transactions on Industrial Electronics, 2017, 64(8):6796-6804.
[17] LEE J, YOO C S, PARK Y, et.al. An experimental study on time delay control of actuation system of tilt rotor unmanned aerial vehicle [J]. Mechatronics, 2012, 22(2):184-194.
[18] 李德昀, 徐德刚, 桂卫华. 基于时间延时估计和自适应模糊滑模控制器的双机器人协同阻抗控制 [J]. 控制与决策, 2021, 36(06):1311-1323.
    LI Deyun, XU Degang, GUI Weihua. Coordinated impedance control for dual-arm robots based on time delay estimation and adaptive fuzzy sliding mode controller [J]. Control and Decision, 2021, 36(06):1311-1323.
[19] 张建宇, 高天宇, 于潇雁, 等. 基于自适应时延估计的空间机器人连续非奇异终端滑模控制 [J]. 机械工程学报, 2021, 57(11):177-183.
    ZHANG Jianyu, GAO Tianyu, YU Xiaoyan, et.al. Continuous non-singular terminal sliding mode control of space robot based on adaptive time delay estimation[J]. Journal of Mechanical Engineering, 2021, 57(11):177-183.
[20] WANG J, ZHOU Y D, BAO Y L, et.al. Trajectory tracking control using fractional-order terminal sliding mode control with sliding perturbation observer for a 7-DOF robot manipulator [J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4):1886-1893.
[21] KANG J J, ZHU Z H, WANG W, et.al. Fractional order sliding mode control for tethered satellite deployment with disturbances [J]. Advances in Space Research, 2017, 59(1):263-273.
[22] DONYA N, MOHAMMADALI B. Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators [J]. IET Control Theory & Applications, 2016, 10(13):1565-1572.
[23] 常宇健, 田沃沃, 金格,等. 基于微分几何法的非线性分数阶悬架主动控制 [J]. 振动与冲击, 2021, 40(04):270-276.
    CHANG Yujian, TIAN Wowo, JIN Ge, et.al. Active control of nonlinear suspension with fractional order based on a differential geometry method [J] Journal of Vibration and Shock, 2016, 10(13):1565-1572.
[24] ZHANG Y Y, YANG X H, WEi P, et.al. Fractional order adaptive non singular fast terminal sliding mode control with time delay estimation for robotic manipulators [J]. Iet Control Theory and Applications, 2020, 14:2556-2565.
[25] WANG Y Y, YAN F, JIANG S R, et.al. Time delay control of cable-driven manipulators with adaptive fractional-order nonsingular terminal sliding mode [J]. Advances in Engineering Software, 2018, 121:13-25.
[26] HAN S. Modified Grey-Wolf Algorithm Optimized Fractional-Order Sliding Mode Control for Unknown Manipulators With a Fractional-Order Disturbance Observer [J]. IEEE Access, 2020, 8:18337-18349.
[27] 王聪, 张宏立, 马萍. 基于有限时间函数投影的电力系统混沌控制 [J]. 振动与冲击, 2021, 40(14):125-131.
    WANG Cong, HANG Hongli, MA Ping. Finite-time function projective synchronization control method for a chaotic power system. [J]. Journal of Vibration and Shock, 2021, 40(14):125-131.

PDF(1936 KB)

478

Accesses

0

Citation

Detail

段落导航
相关文章

/