为解决反作用轮微振动引起卫星成像质量下降问题,依据反作用轮微振动特性,设计了一种汇聚式六自由度被动隔振系统。隔振系统通过弹簧刚度设计降低系统整体模态频率,结合高阻尼特性的锰铜合金作为隔振元件材料来提高振动能量衰减。首先,采用拉格朗日方程建立隔振系统动力学模型,考虑刚度对隔振性能影响,设计不同结构参数弹簧进行对照,分析弹簧径轴刚度比与系统基频关系,并确定最佳隔振结构参数。其次,利用有限元法分析隔振系统模态及振动传递特性,讨论各自由度下振动抑制性能。最后,搭建Kistler微振动试验平台对隔振前后的反作用轮微振动进行测量,分析与验证隔振器的减振效果。结果表明:隔振系统在六个扰动方向和中高频范围内隔振效果显著,在1000Hz主频振动处隔振效果超过40dB;在0~2500rpm转速内Fz方向上最大振动幅值的减振百分比达到92.42%。
Abstract
In order to solve the problem of satellite imaging quality degradation caused by micro-vibration of reaction wheel, a six-dof passive vibration isolation system was designed according to the micro-vibration characteristics of reaction wheel. The vibration isolation system reduces the overall modal frequency of the system through spring stiffness design, and the high damping manganese-copper alloy is used as vibration isolation element material to improve vibration energy attenuation. Firstly, the dynamic model of vibration isolation system was established by Lagrange equation. Considering the influence of stiffness on vibration isolation performance, different structural parameters of spring were designed for comparison. The relationship between the stiffness ratio of diameter-axis and the fundamental frequency of the system was analyzed, and the optimal structural parameters of vibration isolation were determined. Secondly, the finite element method is used to analyze the modal and vibration transfer characteristics of the vibration isolation system, and the vibration suppression performance under various degrees of freedom is discussed. Finally, a Kistler micro-vibration test platform was built to measure the micro-vibration of the reaction wheel before and after vibration isolation, and the vibration reduction effect of the isolator was analyzed and verified. The results show that the vibration isolation effect of the vibration isolation system is significant in six disturbance directions and in the range of middle and high frequency, and the vibration isolation effect is more than 40dB at 1000Hz main frequency vibration. The vibration reduction percentage of the maximum vibration amplitude in the Fz direction from 0 to 2500rpm is 92.42%.
关键词
反作用轮 /
微振动 /
隔振系统 /
锰铜高阻尼合金
{{custom_keyword}} /
Key words
reaction wheel /
micro-vibration /
vibration isolation system;manganese-copper high damping alloy
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曲亚楠,陆春玲,李潭等.高分辨率卫星微振动研究现状及发展前景展望[J].中国航天,2014(08):22-24.
QU Ya-nan, LU Chun-ling, LI Tan et al. Research Status and Prospect of High resolution Satellite Micro-vibration [J]. Journal of China Aerospace,2014(08):22-24.
[2] 王嘉登,张高雄,茅敏.卫星控制力矩陀螺微振动抑制装置的动力学建模与实验研究[J].振动与冲击,2021,40(01):1-7.
WANG Jia-deng, ZHANG Gao-xiong, MAO Min. Dynamic Modeling and Experimental Study of micro-vibration Suppression Device for Satellite Control Torque gyro [J]. Journal of Vibration and Shock, 2021,40(01):1-7.
[3] 孟光,周徐斌.卫星微振动及控制技术进展[J].航空学报,2015,36(08):2609-2619.
MENG Guang, ZHOU Xu-bin. Progress in satellite micro-vibration and control technology [J]. Journal of Acta Aeronautica ET Astronautica Sinica,2015,36(08):2609-2619.
[4] Gong T, Zhang Z, X Luo, et al. Sparsity maximization nonlinear blind deconvolution and its application in identification of satellite microvibration sources[J]. Journal of Mechanical Science and Technology, 2020, 34(1):69-81.
[5] Kamesh D, Pandiyan R, Ghosal A. Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform[J]. Journal of Sound & Vibration,331 (2012) 1310-1330.
[6] Pendergast K J, Schauwecker C J. Use of a passive reaction wheel jitter isolation system to meet the Advanced X-Ray Astrophysics Facility imaging performance requirements[C]. Space Telescopes & Instruments V. International Society for Optics and Photonics, 1998
[7] Zhou W, Li D. Experimental research on a vibration isolation platform for momentum wheel assembly[J]. Journal of Sound and Vibration, 2013, 332 1157-71.
[8] Zhou N, Liu K. A Tunable High-Static-Low-Dynamic Stiffness Vibration Isolator[J]. Journal of Sound and Vibration, 2010, 329(9): 1254-1273.
[9] Huang X, Elliott S J, Brennan M J. Active Isolation of a Flexible Structure from Base Vibration[J]. Journal of Sound and Vibration, 2003, 263(2): 357-376.
[10] Lin W H, Chopra A K. Earthquake Response of Elastic SDF Systems with Non-Linear Fluid Viscous Dampers[J]. Earthquake Engineering and Structure Dynamics, 2002, 31(9): 1623-1642.
[11] 王乃亮,冀璞光,殷福星等.M2052高阻尼合金在结构件减振中的应用研究[J].河北工业大学学报,2017,46(03):88-93.
WANG Nai-liang,JI Pu-guang,YI Fu-xing et al. Application of M2052 High Damping Alloy in Vibration Reduction of Structural Parts [J]. Journal of hebei university of technology,2017,46(03):88-93.
[12] 余松,黄可凡,蒋建平.飞轮微振动的准零刚度多向隔振方法[J].振动与冲击,2022,41(02):123-129.
YU Song,HUANG Ke-fan,JIANG Jian-ping.Quai-zero-stiffness multi-direction isolation method for the micro-vibration isolation of flywheels [J]. Journal of Vibration and Shock,2022,41(02):123-129.
[13] 孙洪雨,张雷,陈善搏等.飞轮微振动的组合隔振装置设计及实验研究[J].宇航学报,2020,41(10):1288-1294.
SUN Hong-yu,ZHANG Lei,CHEN Shan-bo et al.Design and Experimental Study of the Combined Vibration Isolation Device of Flywheels [J]. Journal of astronautics,2020,41(10):1288-1294.
[14] Zhang T, Huang H, Zhao F, et al. A control strategy using negative stiffness for active vibration isolation[C]. 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Sanya: IEEE ,2008, 1(2): 712-716.
[15] Hoque E, Mizuno T, Ishino Y, et al. A six-axis hybrid vibration isolation system using active zero-power control supported by passive weight support mechanism[J]. Journal of Sound and Vibration, 2010, 329(17): 3417-3430.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}