附加自由阻尼板高频振动响应的能量流模型

江旭东1, 韩月东2,滕晓艳2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 321-330.

PDF(2273 KB)
PDF(2273 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 321-330.
论文

附加自由阻尼板高频振动响应的能量流模型

  • 江旭东1, 韩月东2,滕晓艳2
作者信息 +

Energy flow model for a high-frequency vibrating plate with free-layer damping treatment

  • JIANG Xudong1, HAN Yuedong2, TENG Xiaoyan2
Author information +
文章历史 +

摘要

为了预示自由阻尼结构(free layer damping ,FLD)的高频振动响应,将复刚度法与能量流分析(energy flow analysis ,EFA)理论相结合,推导了大阻尼条件下高频振动自由阻尼板的能量密度方程。分析了阻尼交界面处的能量传递关系,利用耦合结构的能量流分析方法推导了局部附加阻尼处理的薄板结构的能量密度方程。基于上述能量密度方程,构建了完全/局部自由阻尼板的能量有限元模型,求解了阻尼层合结构的高频能量流响应。通过对比模态解析解与能量有限元模型的数值解,验证了所建立的自由阻尼板高频振动能量流模型的有效性。

Abstract

To predict the high-frequency vibrational response for a plate with free layer damping (FLD) treatment, the energy density equation considering high damping effect was derived using energy flow analysis (EFA) method combined with complex stiffness method. Wave transmission analysis was performed for power transfer relation at discontinuous interface of FLD. Then the energy density equation for a plate with partial FLD treatment is also achieved by EFA of coupled plate. The energy finite element method (EFEM) was employed to solve the derived energy density equations for the plate with full or partial FLD treatment. Simulated results obtained by EFEM were compared with those obtained by modal superposition method, which were used as a reference. It demonstrates that the proposed EFA model can predict the energy density of the high-frequency vibrating plate with FLD treatment with reasonable accuracy.

关键词

能量流分析 / 自由阻尼结构 / 能量有限元 / 高频振动

Key words

vibration and wave / gantry crane / finite element analysis

引用本文

导出引用
江旭东1, 韩月东2,滕晓艳2. 附加自由阻尼板高频振动响应的能量流模型[J]. 振动与冲击, 2023, 42(14): 321-330
JIANG Xudong1, HAN Yuedong2, TENG Xiaoyan2. Energy flow model for a high-frequency vibrating plate with free-layer damping treatment[J]. Journal of Vibration and Shock, 2023, 42(14): 321-330

参考文献

[1] HONGDA Zhao, ZHIWEI Hao, WEI Liu, et al. The shock environment prediction of satellite in the process of satellite-rocket separation [J]. Acta Astronautica, 2019, 159: 112-122.
[2] 王怀志,于开平,张宗强,等. 仪器舱结构的能量有限元中频声振环境预示[J]. 振动与冲击, 2019, 38(10): 143-148.
WANG Huaizhi, YU Kaiping, ZHANG Zongqiang, et al. Prediction of the acoustic-vibration environment of an instrument cabin by using the energy finite element method [J]. Journal of Vibration and Shock, 2019, 38(10): 143-148.
[3] 赵宏达,丁继锋,郝志伟,等. 复杂航天器结构火工冲击环境预示方法研究[J]. 宇航学报, 2020, 41(1): 35-43.
ZHAO Hongda, DING Jifeng, HAO Zhiwei, et al. Study on prediction methods of pyroshock environment for complex spacecraft structures [J]. Journal of Astronautics, 2020, 41(1): 35-43.
[4] ILHAN Yilmaz, ERSEN Arslan, KADIR Cavdar. Experimental and numerical investigation of sound radiation from thin metal plates with different thickness values of free layer damping layers [J]. Acoustics Australia, 2021, 49: 1-14.
[5] SHOKRIEH M M, NAJAFI A. Damping characterization and viscoelastic behavior of laminated polymer matrix composites using a modified classical lamination theory [J]. Proceedings of the Society for Experimental Mechanics, 2007, 47(6): 831-839.
[6] 夏小均, 徐中明, 赖诗洋, 等. 基于波函数法的自由阻尼薄板与声学耦合响应[J]. 振动与冲击, 2017, 36, (19): 158-163.
XIA Xiaojun, XU Zhongming, LAI Shiyang, et al. Responses of unconstrained damped vibro-acoustic systems using the wave based prediction technique [J]. Journal of Vibration and Shock, 2017, 36, (19): 158-163.
[7] LIU Ling, COORADI Roberto, RIPAMONTI Franceco, et al. Wave based method for flexural vibration of thin plate with general elastically restrained edges [J]. Journal of Sound and Vibration, 2020, 483: 115468.
[8] GIUSEPPE Petrone, GIACOMO Melillo, AURELIO Laudiero, et al. A Statistical Energy Analysis (SEA) model of a fuselage section for the prediction of the internal Sound Pressure Level (SPL) at cruise flight conditions [J]. Aerospace Science and Technology, 2019, 88: 340-349.
[9] GUPTA Pavan, PAREY Anand. Prediction of sound transmission loss of cylindrical acoustic enclosure using statistical energy analysis and its experimental validation [J]. Journal of Vibration and Control, 2022, 151(1): 544.
[10] CHERIF Raef, WAREING Andrew, ATALLA Noureddine. Sound transmission paths through a statistical energy analysis model of mechanically linked aircraft double-walls [J]. Noise Control Engineering Journal, 2020, 69(5): 411-421.
[11] POBLET-PUIGJ. Estimation of the coupling loss factors of structural junctions with in-plane waves by means of the inverse statistical energy analysis problem [J]. Journal of Sound and Vibration, 2021, 493(3): 133-145.
[12] CHEN Q, FEI Q, LI Y, et al. Prediction of statistical energy analysis parameters in thermal environment [J]. Journal of Spacecraft and Rockets, 2019, 56(3): 687-694.
[13] 陈强,张鹏,李彦斌,等. 热环境下长宽比对L型折板统计能量分析参数的影响研究[J]. 振动与冲击, 2018, 37(4): 191-196.
CHEN Qiang, ZHANG Peng, LI Yanbin, et al. Effect of aspect ratio on statistical energy analysis parameters of L-shaped folded plate under thermal environment [J]. Journal of Vibration and Shock, 2018, 37(4): 191-196.
[14] 胡婉璐,陈海波,钟强. 轴力对梁结构耦合损耗因子的影响研究[J]. 振动与冲击, 2020, 39(17): 24-30.
HU Wanlu, CHEN Haibo, ZHONG Qiang. Effects of axial force on coupling loss factor of beam structures [J]. Journal of Vibration and Shock, 2020, 39(17): 24-30.
[15] GAO Ruxin, ZHANG Yahui, KENNDY David. Optimization of mid-frequency vibration for complex built-up systems using the hybrid finite element-statistical energy analysis method [J]. Engineering Optimization, 2019, 2019(2): 1-21.
[16] 张婧, 李贤徽. 线耦合平板瞬态高频振动响应预报[J]. 声学学报, 2018, 43(1): 61-68.
ZHANG Liang, LI Xianhui. Prediction of transient high-frequency vibration response of line-coupled plates [J]. Acta Acustica, 2018, 43(1): 61-68.
[17] ZHANG W B, CHEN H L, ZHU D H, et al. The thermal effects on high-frequency vibration of beams using energy flow analysis [J]. Journal of Sound and Vibration, 2014, 333(9): 2588-2600.
[18] WANG Di, XIE Miaoxia, LI Yueming. High-frequency dynamic analysis of plates in thermal environments based on energy finite element method [J]. Shock and Vibration, 2015, 2015: 1-14.
[19] CHEN Z L, YANG Z C, GUO N, et al. An energy finite element method for high frequency vibration analysis of beams with axial force [J]. Applied Mathematical Modelling, 2018, 61(9): 521-539.
[20] YAN Xiaoyan. Energy finite element analysis developments for high frequency vibration analysis of composite structures [D]. United States: University of Michigan, 2008.
[21] LIU Zhihui, NIU Junchuan. Vibrational energy flow model for functionally graded beams [J]. Composite structures, 2018, 186: 17-28.
[22] 刘知辉,牛军川,贾睿昊. 热梯度环境下梁高频振动的能量流模型[J]. 航空学报, 2021, 225336.
LIU Zhihui, NIU Junchuan, JIA Ruihao. Energy flow model for high-frequency vibration of beams in thermal-gradient environment[J]. Acta Aeronauticaet Astronautica Sinica, 2021, 225336.
[23] YONG Ho Kim, JUNE Yeon Kang. Energy flow analysis of equivalent fluid models for porous media [J]. The Journal of the Acoustical Society of America, 2021, 150(4): 2782.
[24] CHO P E. Energy flow analysis of coupled structures [D]. West Lafayette: Purdue University, 1993.
[25] LIU Z H, NIU J C, GAO X. An improved approach for analysis of coupled structures in Energy Finite Element Analysis using the coupling loss factor [J]. Computers and Structures, 2018, 210(11): 69-86.
[26] PARK Young-Ho. Energy flow finite element analysis of general Mindlin plate structures coupled at arbitrary angles [J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 11(1): 435-447.
[27] LIU H L, ZHANG Z Y, LI B T, et al. Topology optimization of high frequency vibration problems using the EFEM-based approach [J]. Thin-Walled Structures, 2021, 160(10): 124-136.
[28] YEO Sang-Jae, HONG Suk-Yoon, SONG Jee-Hun, et al. Vibrational energy flow models for dilatational wave in elastic solids [J]. Advances in Mechanical Engineering, 2017, 9(12): 1-9.
[29] ZENG X, DAI W Q, QIU Y, et al. Prediction and energy contribution analysis of interior noise in a high-speed train based on modified energy finite element analysis [J]. Mechanical Systems and Signal Processing, 2019, 126(11): 439-457.
[30] 陈兆林,杨智春,王用岩,等. 基于能量有限元法和虚拟模态综合法的高频冲击响应分析方法[J]. 航空学报, 2018, 39(8): 182-191.
CHEN Zaolin, YANG Zhichun, WANG Yongyan, et al. A high-frequency shock response analysis method based on energy finite element method and virtual mode synthesis and simulation [J]. Acta Aeronautica et Astronautica sinica, 2018, 39(8): 182-191.
[31] ZHAO Hongda, DING Jifeng, ZHU Weihong, et al. Shock response prediction of the typical structure in spacecraft based on the hybrid modeling techniques [J]. Aerospace Science and Technology, 2019, 89: 460-467.
[32] CHEN Zhaolin, YANG Zhichun, GU Yingsong, et al. An energy flow model for high-frequency vibration analysis of two-dimensional panels in supersonic airflow [J]. Applied Mathematical Modelling, 2019, 76: 495-512.
[33] HAN Ju-Bum, HONG Suk-Yoon, SONG Jee-Hun, et al. Vibrational energy flow models for the rayleigh-love and rayleigh-bishop rods [J]. Journal of Sound and Vibration, 2014, 333(2): 520-540.
[34] HAN Ju-Bum, HONG Suk-Yoon, SONG Jee-Hun, et al. Vibrational energy flow models for the 1-D high damping system [J]. Journal of Mechanical Science and Technology, 2013, 27(9): 2659-2671.
[35] TENG Xiaoyan, Liu Nan, Jiang Xudong. Analytical model of high-frequency energy flow response for a beam with free layer damping [J]. Advances in Mechanical Engineering, 2020, 12(12): 1-12.
[36] HAN F, BERNHARD R J, MONGEAU L G., Energy flow analysis of vibrating beams and plates for discrete random excitations [J]. Journal of Sound and Vibration. 1997, 208, 841-859.
[37] HAN F, MONGEAU L G, BERNHARD R J. Energy flow analysis of beams and plates for random distributed loading [J]. Journal of Fluids and Structures, 1998, 12, 315-333.

PDF(2273 KB)

Accesses

Citation

Detail

段落导航
相关文章

/