冲击载荷作用下机身壁板破坏效应及结构优化

李永鹏1,徐豫新1,2,3,杨祥4,李旭东5

振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 40-47.

PDF(2315 KB)
PDF(2315 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 40-47.
论文

冲击载荷作用下机身壁板破坏效应及结构优化

  • 李永鹏1,徐豫新1,2,3,杨祥4,李旭东5
作者信息 +

Failure effect and structure optimization of a fuselage panel under impact load

  • LI Yongpeng1,XU Yuxin1,2,3,YANG Xiang4,LI Xudong5
Author information +
文章历史 +

摘要

研究非包容抗爆结构约束下,冲击波和端头两种冲击载荷对机身壁板的破坏效应。以定向非包容抗爆结构冲击位置处机身壁板为研究对象,通过有限元数值模拟,分析了非包容抗爆结构约束下冲击波和端头两种载荷作用于不同位置时,机身壁板的破坏模式和程度,并以限制机身壁板破坏范围为目的,对冲击位置处机身壁板进行了结构优化。结果表明,在冲击波作用下机身壁板的主要破坏模式为蒙皮剪切冲塞、沿筋和垂直于筋撕裂以及筋条断裂,在端头作用下则为蒙皮沿筋和垂直于筋撕裂以及筋条断裂;冲击位置对端头载荷作用下机身壁板的破坏程度影响较冲击波明显;端头冲击筋条位置对机身壁板的整体破坏程度较小,为较优的冲击方案;垂直加筋对两种冲击模式下机身壁板的破口扩展均有明显约束效果,但对端头作用下的约束效果更佳,端头冲击筋间或筋条位置时,增加垂直加筋壁板损伤面积分别减小了56.0%和39.0%。研究结果可为民机用非包容抗爆容器结构设计及冲击位置处机身壁板结构设计提供指导。

Abstract

Under the constraint of non-containment explosion-proof structure, the damage effect of shock wave and plug on the fuselage panel is studied. Taking the fuselage panel at the impact position of directional non-containment explosion-proof structure as the research object, through finite element numerical simulation, the failure mode and degree of shock wave and plug acting on the body panel at different positions under the constraint of non-containment explosion-proof structure are analyzed. Then, in order to limit the damage range of the fuselage panel, we optimize the structure of the fuselage panel at the impact position. The results show that the main failure modes of the fuselage panel under shock wave impact are skin shear plug, rib tearing along and perpendicular to the tendons, and rib fracture, while under plug impact, the skin is torn along and perpendicular to the tendons and the ribs are broken. The influence of impact position on the damage degree of fuselage panel under plug impact is more obvious than that of shock wave impact. The position of the plug impact bar has less damage to the fuselage panel as a whole, so it is a better impact scheme. Vertical reinforcement has obvious restraint effect on the crack expansion of fuselage panel under two impact modes, but the restraint effect is better under the action of end. When the plug hits the position of two bars or single bar, the damage area of vertical reinforcement panel is reduced by 56.0% and 39.0% respectively. The research results can provide guidance for the structural design of non-contained explosion-proof vessels for civil aircraft and the structural design of fuselage panels at the impact position.

关键词

最小风险炸弹位置 / 机身壁板 / 结构响应 / 数值仿真 / 2020-T3铝合金

Key words

least risk bomb location / fuselage wall plate / structural response / numerical simulation / 2020-T3 aluminum alloy

引用本文

导出引用
李永鹏1,徐豫新1,2,3,杨祥4,李旭东5. 冲击载荷作用下机身壁板破坏效应及结构优化[J]. 振动与冲击, 2023, 42(14): 40-47
LI Yongpeng1,XU Yuxin1,2,3,YANG Xiang4,LI Xudong5. Failure effect and structure optimization of a fuselage panel under impact load[J]. Journal of Vibration and Shock, 2023, 42(14): 40-47

参考文献

[1] MARTIN RGM, BRISTOW JW. Research Programme into civil aircraft hardening. Conference Proceedings. [R] The Federal Aviation Administration’s Third Inter-national A viation Security Technology Symposium, At-lantic City, 2001.
[2] FAA. FAR Part 25 Amendment No: 25-127. Security considerations Requirements for Transport Gategory Airplanes[S]. United States: Federal Aviation Administration, 2008.
[3] FAA.14 CFR Parts 25. Airworthiness standards: transport category airplane[S].Washington: Federal Aviation Ad ministration, 2013.
[4] FAA. AC No:25. 795-6. Least risk bomb location[S]. Washington: Federal Aviation Administration,1993.
[5] Authority, Civil Aviation. Aircraft hardening research pro -gramme-Final overview report[R]. Technical Report 2001/9, London:CAA, 200l.
[6] Zangani D, Ambrosetti S, Bozzolo A, et al. Textile-Based Luggage Containers for Onboard Blast Protection[J]. SAE International Journal of Aerospace, 2011, 4(2): 690.
[7] 王元元. 2016年值得关注的民用航空技术[J]. 大飞机, 2016 (01): 42-44.
WANG Yuan-Yuan. Civilian aviation technology that merits attention most in 2016[J]. Jetliner, 2016(01): 42-44. (in Chinese)
[8] 陆鹏,郭忠宝,杨超.民用飞机最小风险炸弹位置适航符合性验证方法研究[J].民用飞机设计与研究,2016(04):6-12.
LU Peng, GUO Zhong-bao, YANG Chao. Verification Method Investigation of Airworthiness Compliance for Civil Aircraft Least Risk Bomb Location Design[J]. Civil Aircraft Design and Research,2016,(4):6-12. ( in Chinese)
[9] 朱铮铮, 冯蕴雯, 薛小峰,等. 一种民机客舱便携式定向防爆装置[P]. CN106197184A. 2016-12-07.
ZHU Zheng-zheng, FENG Yun-wen, XUE Xiao-feng, et al. A portable directional explosion-proof device for civil aircraft cabin[P]. CN106197184A. 2016-12-07(in Chinese).
[10] 韩璐, 苏健军, 张玉磊,等. 一种聚能泄压民机客舱定向防爆装置[P]. CN109780956A.2020-09-25.
HAN Lu, SUN Jian-jun, ZHANG Yu-lei, et al. A directional explosion-proof device in cabin of civil aircraft with concentrated energy and pressure relief[P]. CN109780956A. 2020-09-25 (in Chinese).
[11] 亨利奇著. 爆炸动力学及其应用[M]. 熊建国等译. 北京:科学出版社,1987.
J.Henrych. The Dynamics of Explosion and Its Use[M]. XIONG Jian-guo, et al. Beijing: Science Press, 1987(in Chinese).
[12] Sadovskyi M. A. Mechanical action of air shock waves of explosion, based on experimental data[M]. Moscow: Izd Akad Nauk SSSR, 1952.
[13] 叶晓华. 军事爆破工程[M].北京:解放军出版社,1999.
YE Xiao-hua. Military blasting engineering[M]. Beijing: PLA Publishing House,1999(in Chinese).
[14] 李翼祺, 马素贞. 爆炸力学[M]. 北京:科学出版社, 1992.
LI Yi-qi, MA Su-zhen. Explode mechanics. Beijing: Science Press, 1992.
[15] LEE E, FINGER M, COLLINS W . JWL Equation of State coefficients for high explosives[J]. Lawrence Livermore National Laboratory Report, 1973.
[16] NIA A B, NEJAD A F, XIN L, et al. Dynamic response of aluminium sheet 2024-T3 subjected to close-range shock wave: experimental and numerical studies[J]. Journal of Materials Research and Technology, 2021, 10: 349-362.
[17] Zaouk A K, Marzougui D. Development and validation of a US side impact moveable deformable barrier FE model[C]// 3rd European LS-DYNA Users Conference, Paris. 2001, 14.
[18] CASTEDO R, NATALE M, López L M, et al. Estimation of Jones-Wilkins-Lee parameters of emulsion explosives using cylinder tests and their numerical validation[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 290-301.
[19] WANG X , SHI J . Validation of Johnson-Cook plasticity and damage model using impact experiment[J]. International Journal of Impact Engineering, 2013, 60(10): 67-75.
[20] 戴志成. 飞机断离销剪切强度有限元与实验研究[D]. 沈阳: 沈阳理工大学, 2017.
DAI Zhi-cheng. Finite element and experimental study on shear strength of aircraft fuse pin[D]. Shenyang: Shenyang Ligong University, 2017(in Chinese).
 
 

PDF(2315 KB)

Accesses

Citation

Detail

段落导航
相关文章

/