梁侧导流板对型叠合梁断面涡振性能影响及抑振机理研究

雷伟1,2,王骑1,2,廖海黎1,2,李志国1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 48-55.

PDF(2403 KB)
PDF(2403 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 48-55.
论文

梁侧导流板对型叠合梁断面涡振性能影响及抑振机理研究

  • 雷伟1,2,王骑1,2,廖海黎1,2,李志国1,2
作者信息 +

Influence of guide plates on the side of the edge girder on the VIV performance of the π-shaped composite deck section and its vibration suppression mechanism

  • LEI Wei1,2,WANG Qi1,2,LIAO Haili1,2,LI Zhiguo1,2
Author information +
文章历史 +

摘要

具有开口形式的型断面是一种易发生涡激振动(vortex-induced vibrations,VIVs)的钝体断面。为了准确把握某主跨520 m的型叠合梁斜拉桥的涡振性能,开展了1:25大尺度节段模型风洞试验,比较了在边主梁侧面布置不同的导流板(即梁侧导流板)对主梁涡振性能的影响。试验结果表明,原设计断面在-3°和-5°风攻角下存在显著的竖向涡振现象。当设置宽度为1.5 m、水平倾角为35°的梁侧导流板后,主梁在不同风攻角下均未发生涡振。通过对主梁绕流场数值模拟初步探讨了主梁发生竖向涡振的原因及导流板的抑振机理。模拟结果表明,导流板能够减小主梁底部区域旋涡的尺寸,使得主梁上下表面周期性压力差和气动力显著减小,从而削弱了诱发主梁涡振的条件,起到了抑制主梁竖向涡振的作用。该研究结果可为型叠合梁断面的涡振抑振措施设计提供参考。

Abstract

The -shaped section with open form is a kind of bluff body section which is prone to vortex-induced vibrations (VIVs). In order to elaborate the VIV performance of a cable-stayed bridge with -shaped composite deck and a main span of 520m, 1:25 large-scale section model wind tunnel tests were carried out to compare the effects of different guide plates arranged on the side of the edge girder on VIV performance of the deck. The experimental results show that significant vertical VIVs exist at -3° and -5° wind attack angles as for the original section. The guide plates on the side of the edge girder with a width of 1.5m and 35° tilt angle can suppress VIVs at all the wind attack angles. Finally, the causes of vertical VIVs and the vibration suppression mechanism of the guide plates are analyzed preliminarily through the numerical simulation of the flow field around the deck. The results show that the guide plates help reduce the size of vortices under the deck, thus mitigating the aerodynamic force and the periodic pressure difference between the upper and lower surfaces of the deck. It is achieved that the factors inducing VIVs are controlled, and VIVs of the deck are suppressed. The results can provide a reference for the design of the aerodynamic countermeasures for -shaped composite deck section.

关键词

涡激振动 / ?型断面 / 梁侧导流板 / 风洞试验 / 数值模拟

Key words

vortex-induced vibrations / ?-shaped section / guide plates on the side of the deck / wind tunnel tests / numerical simulations

引用本文

导出引用
雷伟1,2,王骑1,2,廖海黎1,2,李志国1,2. 梁侧导流板对型叠合梁断面涡振性能影响及抑振机理研究[J]. 振动与冲击, 2023, 42(14): 48-55
LEI Wei1,2,WANG Qi1,2,LIAO Haili1,2,LI Zhiguo1,2. Influence of guide plates on the side of the edge girder on the VIV performance of the π-shaped composite deck section and its vibration suppression mechanism[J]. Journal of Vibration and Shock, 2023, 42(14): 48-55

参考文献

[1] 钱国伟, 曹丰产, 葛耀君. Ⅱ型叠合梁斜拉桥涡振性能及气动控制措施研究 [J]. 振动与冲击, 2015, 34(02): 176-181.
QIAN Guowei, CAO Fengchan, GE Yaojun. Vortex-induced vibration performance of a cable-stayed bridge with Ⅱ shaped composite deck and its aerodynamic control measures [J]. Journal of Vibration and Shock, 2015, 34(02): 176-181.
[2] 李明, 孙延国, 李明水, 等. 非对称П型梁和流线型箱梁气动性能风洞试验研究 [J]. 振动与冲击, 2019, 38(08): 54-60.
LI Ming, SUN Yanguo, LI Mingshui, et al. A study on the aerodynamic characteristics of an asymmetric П shaped girder and an asymmetric streamlined box girder via a wind tunnel test [J]. Journal of Vibration and Shock, 2019, 38(08): 54-60.
[3] 李春光, 颜虎斌, 梁爱鸿, 等. 稳定板对带式输送机边主梁斜拉桥涡振性能影响机理的研究 [J]. 振动与冲击, 2022, 41(08): 25-33.
LI Chunguang, YAN Hubin, LIANG Aihong, et al. Mechanism study on the effect of a stabilizing plate on vortex induced vibration performance of a cable stayed bridge with a side main girder of a belt conveyor [J]. Journal of Vibration and Shock, 2022, 41(08): 25-33.
[4] HE H X, LI J W. Study on the Effect and Mechanism of Aerodynamic Measures for the Vortex-Induced Vibration of Separate Pairs of Box Girders in Cable-Stayed Bridges[J]. Shock and Vibration, 2015, 2015
[5] NAGAO F, UTSUNOMIYA H, YOSHIOKA E, et al. Effects of handrails on separated shear flow and vortex-induced oscillation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 71: 819-827.
[6] YANG Y X, ZHOU R, GE Y J, et al. Experimental studies on VIV performance and countermeasures for twin-box girder bridges with various slot width ratios[J]. Journal of Fluids and Structures, 2016, 66: 476-489.
[7] LAIMA S, LI H, CHEN W, et al. Effects of attachments on aerodynamic characteristics and vortex-induced vibration of twin-box girder[J]. Journal of Fluids and Structures, 2018, 77: 115-133.
[8] BAI H, JI N C, XU G J, et al. An alternative aerodynamic mitigation measure for improving bridge flutter and vortex induced vibration (VIV) stability: Sealed traffic barrier[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104302.
[9] HU C X, ZHAO L, GE Y J. Mechanism of suppression of vortex-induced vibrations of a streamlined closed-box girder using additional small-scale components[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 189: 314-331.
[10] ZHOU R, GE Y J, LIU Q K, et al. Experimental and numerical studies of wind-resistance performance of twin-box girder bridges with various grid plates[J]. Thin-Walled Structures, 2021, 166: 108088.
[11] 李春光, 黄静文, 张记, 等. 边主梁叠合梁涡振性能气动优化措施风洞试验研究 [J]. 振动与冲击, 2018, 37(17): 86-92.
LI Chunguang, HUANG Jingwen, ZHANG Ji, et al. Aerodynamic optimization measures for VIV performances of a side girder composite beam based on wind tunnel tests [J]. Journal of Vibration and Shock, 2018, 37(17): 86-92.
[12] 张天翼, 孙延国, 李明水, 等. 宽幅双箱叠合梁涡振性能及抑振措施试验研究 [J]. 中国公路学报, 2019, 32(10): 107-115.
ZHANG Tianyi, SUN Yanguo, LI Mingshui, et al. Experimental Study on Vortex-induced Vibration Performance andAerodynamic Countermeasures for a Wide-width Double-box Composite Beam [J]. China Journal of Highway and Transport, 2019, 32(10): 107-115.
[13] MA C M, LI Z G, MENG F C, et al. Wind-induced vibrations and suppression measures of the Hong Kong-Zhuhai-Macao Bridge[J]. Wind and Structures, 2021, 32(3): 179-191.
[14] 王嘉兴, 牛华伟, 靳俊中, 等. 钢-砼叠合边主梁斜拉桥稳定板气动措施研究 [J]. 振动与冲击, 2017, 36(8): 48-54.
WANG Jiaxing, NIU Huawei, JIN Junzhong, et al. Study on stabilizer aerodynamic measure of a cable-stayed bridge with a steel-concrete composite edge girder [J]. Journal of Vibration and Shock, 2017, 36(8): 48-54.
[15] 李欢, 何旭辉, 王汉封, 等. π型断面超高斜拉桥涡振减振措施风洞试验研究 [J]. 振动与冲击, 2018, 37(7): 62-68.
LI Huan, HE Xuhuil, WANG Hanfeng, et al. Wind tunnel tests for vortex-induced vibration control measures of a super high cable-stayed bridge with Π-cross section [J]. Journal of Vibration and Shock, 2018, 37(7): 62-68.
[16] 汪志雄, 张志田, 郄凯, 等. π型开口截面斜拉桥弯扭耦合涡激共振及气动减振措施研究 [J]. 振动与冲击, 2021, 40(1): 52-58.
WANG Zhixiong, ZHANG Zhitian, QIE Kai, et al. Bending -torsion coupled vortex induced resonance of Π-type open section cable stayed bridge and aerodynamic vibration reduction measures [J]. Journal of Vibration and Shock, 2021, 40(1): 52-58.
[17] YANG Y, KIM S, HWANG Y, et al. Experimental study on suppression of vortex-induced vibration of bridge deck using vertical stabilizer plates[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 210
[18] DAITO Y, MATSUMOTO M, ARAKI K. Torsional flutter mechanism of two-edge girders for long-span cable-stayed bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 2127-2141.
[19] LEE H, MOON J, CHUN N, et al. Effect of beam slope on the static aerodynamic response of edge-girder bridge-deck[J]. Wind and Structures, 2017, 25(2): 157-176.
[20] 贺耀北, 周洋, 华旭刚. 双边钢主梁-UHPC组合梁涡振抑制气动措施风洞试验研究 [J]. 振动与冲击, 2020, 39(20): 142-148.
HE Yaobeil, ZHOU Yang, HUA Xugang. A wind tunnel test on aerodynamic measures for vortex -induced vibration suppression of a bilateral steel - UHPC composite beam [J]. Journal of Vibration and Shock, 2020, 39(20): 142-148.
[21] 龙俊贤, 周旭辉, 李前名, 等. 带高防护结构的边箱叠合梁斜拉桥涡振性能及抑振措施研究 [J]. 铁道科学与工程学报, 2021, 18(1): 119-127.
LONG Junxian, ZHOU Xuhui, LI Qianming, et al. Experimental study on vortex-induced vibration performance and aerodynamic countermeasures for a double-box composite beam cable stayed bridge with high protective structure [J]. Journal of Railway Science and Engineerinq, 2021, 18(1): 119-127.
[22] FUJINO Y, SIRINGORINGO D. Vibration Mechanisms and Controls of Long-Span Bridges: A Review[J]. Structural Engineering International, 2013, 23(3): 248-268.
[23] SAKAI Y, OGAWA K, SHIMODOI H, et al. An experimental-study on aerodynamic improvements for edge girder bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49(1-3): 459-466.
[24] ZHOU R, YANG Y X, GE Y J, et al. Practical countermeasures for the aerodynamic performance of long-span cable-stayed bridges with open decks[J]. Wind and Structures, 2015, 21(2): 223-239.
[25] LI K, QIAN G W, GE Y J, et al. Control effect and mechanism investigation on the horizontal flow-isolating plate for PI shaped bridge decks' VIV stability[J]. Wind and Structures, 2019, 28(2): 99-110.
[26] ZHANG T, SUN Y, LI M, et al. Experimental and numerical studies on the vortex-induced vibration of two-box edge girder for cable-stayed bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104336.
[27] BAI H, LI R, XU G, et al. Aerodynamic performance of II-shaped composite deck cable-stayed bridges including VIV mitigation measures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208: 104451.
[28] 公路桥梁抗风设计规范: JTG/T 3360-01-2018 [S]. 北京: 人民交通出版社, 2018.
[29] GAO D L, DENG Z, YANG W H, et al. Review of the excitation mechanism and aerodynamic flow control of vortex-induced vibration of the main girder for long-span bridges: A vortex-dynamics approach[J]. Journal of Fluids and Structures, 2021, 105: 103348.

PDF(2403 KB)

Accesses

Citation

Detail

段落导航
相关文章

/