钢管混凝土斜交网格筒结构地震能量反应分析

蔡文哲1,2,王斌2,3,史庆轩2,3,葛明兰1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 92-106.

PDF(6535 KB)
PDF(6535 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (14) : 92-106.
论文

钢管混凝土斜交网格筒结构地震能量反应分析

  • 蔡文哲1,2,王斌2,3,史庆轩2,3,葛明兰1
作者信息 +

Seismic energy response analysis of a concrete-filled steel tube diagrid structure

  • CAI Wenzhe1,2,WANG Bin2,3,SHI Qingxuan2,3,GE Minglan1
Author information +
文章历史 +

摘要

结合所建立的钢管混凝土柱的轴向恢复力模型对斜交网格筒结构进行了弹塑性时程分析,研究了结构中各能量项的分配规律,从结构-构件-楼层三个层面,依次分析了滞回耗能的分配规律,并探讨了结构动力特性和地震动参数对滞回耗能分布的影响。研究表明:结构主要依靠阻尼耗能和滞回耗能平衡地震输入的能量;斜柱和连梁是斜交网格筒结构的主要耗能构件;斜柱的滞回耗能随楼层增高递减且在模块相接处有明显突变,设计时此处应避免出现较大的刚度突变。研究从能量的角度揭示了斜交网格筒结构的损伤模式和耗能机制,为建立此类结构的地震损伤评估方法提供了参考。

Abstract

Combined with the established axial restoring force model of the concrete-filled steel tube (CFST) column, the elastoplastic time-history analysis of the diagrid tube structure was carried out, and the distribution law of each energy item in the structure was studied. The distribution of hysteretic energy dissipation was analyzed in turn from the three levels of structure-member-floor, and the influence of structural dynamic characteristics and ground motion parameters on the distribution of hysteretic energy dissipation was discussed. The research shows that the structure mainly balances the earthquake input energy through damping energy dissipation and hysteretic energy dissipation. The main energy dissipation components of diagrid tube structure are inclined column and coupling beam. The hysteretic energy dissipation of the inclined column decreases with the increase of the floor and there is an obvious sudden change at the junction of the modules, so the large sudden stiffness change should be avoided in the design. The study reveals the damage mode and energy dissipation mechanism of diagrid tube structure from the perspective of energy, which provides a reference for establishing the seismic damage assessment method of the diagrid structure.

关键词

钢管混凝土柱 / 轴向恢复力模型 / 斜交网格筒结构 / 弹塑性时程分析 / 耗能机制

Key words

the concrete-filled steel tube column / axial restoring force model / diagrid tube structure / elastoplastic time-history / energy dissipation mechanism

引用本文

导出引用
蔡文哲1,2,王斌2,3,史庆轩2,3,葛明兰1. 钢管混凝土斜交网格筒结构地震能量反应分析[J]. 振动与冲击, 2023, 42(14): 92-106
CAI Wenzhe1,2,WANG Bin2,3,SHI Qingxuan2,3,GE Minglan1. Seismic energy response analysis of a concrete-filled steel tube diagrid structure[J]. Journal of Vibration and Shock, 2023, 42(14): 92-106

参考文献

[1] Moon M M A A. Structural Developments in Tall Buildings: Current Trends and Future Prospects [J]. Architectural Science Review,2007,50(3):205-223.
 [2] 王震, 杨学林, 冯永伟, 等. 宁波国华金融大厦超高层斜交网格体系设计[J]. 建筑结构, 2019, 49(03): 9-14.
WANG Zhen, YANG Xue-lin, FENG Yong-wei, et al. Design of super high-rise diagonal grid system for Ningbo Guohua Financial Tower [J]. Building Structure, 2019, 49(03):9-14.
 [3] Moon K, Connor J J, Fernandez J E. Diagrid structural systems for tall buildings: characteristics and methodology for preliminary design [J]. The Structural Design of Tall and Special Buildings,2007,16(2):205-230.
 [4] 周健, 汪大绥. 高层斜交网格结构体系的性能研究[J]. 建筑结构, 2007(05):87-91.
ZHOU Jian, WANG Da-sui. Performance research on high-rise diagonal frame structure [J]. Building Structure, 2007, 37(05): 87-91.
 [5] 史庆轩, 王峰, 桑丹, 等. 钢管混凝土斜交网格筒结构抗震性能研究[J]. 振动与冲击, 2018,37(07):77-84.
SHI Qing-xuan, Wang Feng, Sang Dan, et al. Aseismic behavior of CFST diagrid tube structures [J]. Journal of vibration and shock, 2018, 37(07): 77-84.
 [6] 史庆轩, 任浩, 王斌, 等. 高层斜交网格筒结构体系抗震性能分析[J]. 建筑结构, 2016, 46(04): 8-14.
SHI Qing-xuan, REN Hao, WANG Bin, et al. Seismic behavior analysis of high-rise diagrid tube structural system [J]. Building Structure, 2016, 46(04): 8-14.
 [7] 滕军, 郭伟亮, 容柏生, 等. 高层建筑斜交网格筒结构抗震概念分析[J]. 土木建筑与环境工程, 2011,33(04):1-6.
TENG Jun, GUO Wei-liang, RONG Bai-sheng, et al. Seismic Concept Analysis of High-rise Diagrid Tube Structures [J]. Journal of Civil, Architectural & Environmrntal Engineering, 2011, 33(04): 1-6.
 [8] 滕军, 郭伟亮, 张浩, 等. 斜交网格筒-核心筒结构地震非线性性能研究[J]. 土木工程学报, 2012,45(08):90-96.
TENG Jun, GUO Wei-liang, ZHAO Hao, et al. Study of the nonlinear seismic performance of diagrid tube-core tube structures [J]. CHINA CIVIL ENGINEERING JOURNAL, 2012, 45(08): 90-96.
 [9] 郭伟亮, 滕军, 容柏生, 等. 高层斜交网格筒-核心筒结构抗震性能分析[J]. 振动与冲击, 2011,30(04):150-155.
GUO Wei-liang, TENG Jun, RONG Bai-sheng, et al. A seismic behaviour of a diagrid tube-core tube structure [J]. Journal of vibration and shock, 2011, 30(04): 150-155.
[10] 刘成清, 廖文翔, 方登甲, 等. 高层建筑斜交网格筒结构抗侧移性能及弹塑性分析[J]. 工业建筑, 2020,50(11):57-64.
LIU Cheng-qing, LIAO Wen-xiang, FANG Deng-jia, et al. Lateral displacement resistance and elastic-plastic analysis of diagrid core-tube structure in high-rise buildings [J]. Industrial Construction, 2020, 50(11): 57-64.
[11] 韩小雷, 唐剑秋, 黄艺燕, 等. 钢管混凝土巨型斜交网格筒体结构非线性分析[J]. 地震工程与工程振动, 2009, 29(04): 77-84.
HAN Xiao-lei, TANG Jian-qiu, HUANG Yi-yan, et al. Nonlinear analysis of huge oblique crossing lattice structure with concrete filled steel tube [J]. JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION, 2009, 29(04): 77-84.
[12] 瞿浩川, 王震, 杨学林, 等. 超高层斜交网格-RC核心筒结构抗震性能研究[J]. 建筑结构, 2020, 50(S2): 223-229.
QU Hao-chuan, WANG Zhen, YANG Xue-lin, et al. Seismic behavior study on super high-rise diagrid RC-core wall tube structure [J]. Building Structure, 2020, 50(S2): 223-229.
[13] 蔡文哲, 史庆轩, 王斌. 轴向往复荷载作用下圆钢管混凝土柱恢复力模型研究[J]. 工程力学, 2021, 38(11): 170-179.
CAI Wen-zhe, SHI Qing-xuan, WANG Bin. Research on restorinng force model of concrete-filled steel tube columns under axial cyclic loading [J].ENGINEERING MECHANICS, 2021, 38(11): 170-179.
[14] 混凝土结构设计规范:GB 50010-2010[S]. 北京: 中国建筑工业出版社, 2010.
Code for design of concrete structures:GB 50010-2010[S]. Beijing: China Architecture & Building Press, 2010.
[15] 韩林海. 钢管混凝土结构——理论与实践(第二版)[M]. Beijing: Science Press, 2007.
HAN Lin-hai. Concrete Filled Steel Tube Structure —— Theory and Practice [M]. 中国北京: 科学出版社, 2007.
[16] Mander J B P M J N. Theoretical stress strain model for confined concrete [J]. Journal of Structure Engineering, 1988, 114(8): 1804-1826.
[17] 崔济东, 沈雪龙. PERFORM-3D原理与实例[M]. 北京: 中国建筑工业出版社, 2017.
CUI Ji-dong, SHEN Xue-long. PERFORM-3D Theory and Tutorials [M]. Beijing: China Architecture & Building Press, 2017.
[18] 史庆轩, 吴超锋, 王峰, 等. 高层斜交网格-RC核心筒结构协同受力性能研究[J]. 工程抗震与加固改造, 2016, 38(06): 9-17.
SHI Qing-xuan, WU Chao-feng, WANG Feng, et al. Seismic Response Energy Analysis of Diagrid and RC Tube-core Structures [J]. Earthquake Resistant Engineering and Retrofitting, 2016, 38(06): 9-17.
[19] 王德才, 叶献国. 基于能量分析强震持时指标的选择[J]. 工程抗震与加固改造, 2010, 32(06): 1-8.
WANG De-cai, YE Xian-guo. Index selection of strong motion duration for energy analysis [J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(06): 1-8.
[20] Hancock J, Bommer J J. Using spectral matched records to explore the influence of strong-motion duration on inelastic structural response[J]. Soil Dynamics and Earthquake Engineering, 2007,27(4):291-299.

PDF(6535 KB)

Accesses

Citation

Detail

段落导航
相关文章

/