螺旋式钢阻尼器耗能性能研究

朱妍妍1,高日1,陈良江2,李承根3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (16) : 147-154.

PDF(2097 KB)
PDF(2097 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (16) : 147-154.
论文

螺旋式钢阻尼器耗能性能研究

  • 朱妍妍1,高日1,陈良江2,李承根3
作者信息 +

Energy dissipation performance study of a spiral steel damper

  • ZHU Yanyan1,GAO Ri1,CHEN Liangjiang2,LI Chenggen3
Author information +
文章历史 +

摘要

针对地震作用多向性和随机性的特点,提出了一种具有水平双向耗能功能的螺旋式钢阻尼器。该阻尼器由圆钢弯制成螺旋形状,水平安装在墩顶与梁底之间。基于刚臂法和力法方程,推导了该种阻尼器的承载力计算公式,并采用拟静力循环加载试验研究了阻尼器的滞回性能和低周疲劳寿命。将有限元计算结果分别与理论和试验结果进行了对比。最后研究了螺旋距离、圆钢半径和螺旋半径三个主要形状参数对阻尼器耗能能力的影响。结果表明:螺旋阻尼器的滞回曲线稳定且饱满,具有良好的耗能能力和双向力学行为。

Abstract

A spiral steel damper with horizontal bi-directional energy dissipation is proposed for the multidirectional and random nature of seismic action. The damper is made of round steel bent into a spiral shape which is installed horizontally between the top of the pier and the bottom of the beam. Bearing capacity equations are derived for the dampers based on the rigid arm method and the force method equations. The quasi-static cyclic loading scheme was carried out to investigate the hysteresis performance and low-cycle fatigue life of the damper. Finite element results are compared with theoretical and experimental results respectively. Finally, the influence of the three main shape parameters, namely, spiral distance, round steel radius and spiral radius on the energy dissipation capacity of the damper is investigated. The results show that the dampers have a stable and saturated hysteretic curve, good energy dissipation and bi-directional mechanical behavior.

关键词

桥梁减震 / 螺旋式钢阻尼器 / 承载力计算 / 耗能能力 / 双向力学行为

Key words

bridge seismic-mitigation / spiral steel damper / bearing capacity calculation / energy dissipation capacity / bi-directional mechanical behavior

引用本文

导出引用
朱妍妍1,高日1,陈良江2,李承根3. 螺旋式钢阻尼器耗能性能研究[J]. 振动与冲击, 2023, 42(16): 147-154
ZHU Yanyan1,GAO Ri1,CHEN Liangjiang2,LI Chenggen3. Energy dissipation performance study of a spiral steel damper[J]. Journal of Vibration and Shock, 2023, 42(16): 147-154

参考文献

[1] Lee G C, Kitane Y, Buckle I G. Literature review of the observed performance of seismically isolated bridges[J]. Research progress and accomplishments: multidisciplinary center for earthquake engineering research, 2001: 51-62.
[2] Kunde M C, Jangid R S. Seismic behavior of isolated bridges: A-state-of-the-art review[J]. Electronic journal of structural engineering, 2003, 3(3): 140-170.
[3] Moteki M, Kawai N, Ishida K, et al. Shaking table test on ultimate behavior of seismic isolation system, Part 1: Outline of the test and response of superstructure[C]//Proceedings of the 10th World Conference on Earthquake Engineering. 1992: 2271-2276.
[4] Filipov E T, Fahnestock L A, Steelman J S, et al. Evaluation of quasi-isolated seismic bridge behavior using nonlinear bearing models[J]. Engineering Structures, 2013, 49: 168-181.
[5] Steelman JS, Fahnestock LA, Filipov LA, et al. Shear and friction response of nonseismic laminated elastomeric bridge bearings subject to seismic demands[J]. Journal of Bridge Engineering, 2012,18(7):612–623.
[6] Steelman J S, Filipov E T, Fahnestock L A, et al. Experimental behavior of steel fixed bearings and implications for seismic bridge response[J]. Journal of Bridge Engineering, 2014, 19(8): A4014007.
[7] Steelman J S, Fahnestock L A, Hajjar J F, et al. Performance of nonseismic PTFE sliding bearings when subjected to seismic demands[J]. Journal of Bridge Engineering, 2016, 21(1): 04015028.
[8] Pan P, Ye L P, Shi W, et al. Engineering practice of seismic isolation and energy dissipation structures in China[J]. Science China Technological Sciences, 2012, 55(11): 3036-3046.
[9] 潘鹏, 曹海韵, 齐玉军, 等. 底部薄弱层结构的柱顶隔震加固改造设计[J]. 工程抗震与固改造, 2009, 31 (06): 69-73.
PAN Peng, CAO Hai-yun, QI Yu-jun, et al. Retrofit of Soft First Story Structure Using Seismic lsolation Technology[J]. Earthquake Resistant Engineering and Retrofitting, 2009, 31 (06): 69-73.
[10] 邓开来, 潘鹏, 苏宇坤, 等. 开槽U型金属屈服阻尼器横向性能试验研究[J]. 振动与冲击, 2015, 34 (12): 157-163.
DENG Kai-lai, PAN Peng, SU Yu-kun, et al. Experimental study on lateral performance of slotted U-shaped steel damper [J].Journal of Vibration and Shock[J], 2015, 34 (12): 157-163.
[11] Kelly J M, Skinner R I, Heine A J. Mechanisms of energy absorption in special devices for use in earthquake resistant structures[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 1972, 5(3): 63-88.
[12] Skinner R I, Kelly J M, Heine A J. Hysteretic dampers for earthquake‐resistant structures[J]. Earthquake engineering & structural dynamics, 1974, 3(3): 287-296.
[13] Oh S H, Song S H, Lee S H, et al. Experimental study of seismic performance of base-isolated frames with U-shaped hysteretic energy-dissipating devices[J]. Engineering structures, 2013, 56: 2014-2027.
[14] 苏宇坤, 潘鹏, 邓开来, 等. 双向地震作用下U形钢阻尼器力学性能研究[J]. 建筑结构学报, 2014 ,35 (08): 44-49.
SU Yu-kun, PAN Peng, DENG Kai-lai, et al. Mechanical properties of U-shaped steel damper subjected to bi-axial ground motions[J]. Journal of Building Structures, 2014 ,35 (08): 44-49.
[15] Deng K, Pan P, Su Y, et al. Shape optimization of U-shaped damper for improving its bi-directional performance under cyclic loading[J]. Engineering Structures, 2015, 93: 27-35.
[16] 潘晋, 吴成亮, 仝强, 等. E型钢阻尼器数值仿真及试验研究[J]. 振动与冲击, 2009, 28 (07): 192-195.
PAN Jin, WU Cheng-liang, TONG Qiang, et al. Numerical Simulation and Experimental Study of E-Shaped Steel Damper[J]. Journal of Vibration and Shock, 2009, 28 (07): 192-195.
[17] 李世珩, 陈彦北, 胡宇新, 等. E型钢阻尼器及其在桥梁工程中的应用[J]. 铁道建筑, 2012, (01): 1-4.
LI Shi-heng, CHEN Yan-bei, HU Yu-xin, et al. E-Shaped steel damper and its application in bridge engineering[J]. Railway Engineering, 2012, (01): 1-4.
[18] 李承根,高日.高速铁路桥梁减震技术研究[J].中国工程科学, 2009, 1(11):81-86.
LI Cheng-gen, GAO Ri. Study on the Shock Absorbing Techniqueof High-Speed Railway Bridge[J]. Strategic Study of CAE, 2009, 1(11):81-86.
[19] 孟兮, 高日, 李承根. 铁路简支梁桥中减震榫的设计及其减震性能研究[J]. 桥梁建设, 2014 , 44(03): 81-86.
MENG Xi, GAO Ri, LI Cheng-gen. Design and Seismic Mitigation Performance Study of Shock Absorber for Railway Simply-Supported Beam Bridge[J]. Bridge Construction, 2014 , 44(03): 81-86.
[20] 孟兮,高日.减震榫-活动支座减震机理及影响参数研究[J].铁道标准设计, 2018, 62(02):111-115.
MENG Xi, GAO Ri. Analysis of Damping Mechanism and Effect Parameters of Shock Absorber-Movable Support[J]. Railway Standard Design, 2018, 62(02):111-115.
[21] 李爱丽, 高日, 李承根, 等. 一种新型软钢减震榫的设计与试验研究[J]. 桥梁建设, 2017, 47 (01): 23-28.
LI Ai-li, GAO Ri, LI Cheng-gen. Design and Experimental Study of a Novel Type of Mild Steel Shock Absorber[J]. Bridge Construction, 2017, 47 (01): 23-28.
[22] Liu C, Gao R, Guo B. Seismic design method analyses of an innovative steel damping bearing for railway bridges[J]. Engineering Structures, 2018, 167: 518-532.
[23] Liu C, Gao R. Design method for steel restrainer bars on railway bridges subjected to spatially varying earthquakes[J]. Engineering Structures, 2018, 159: 198-212.
[24] 赵珍珍,张爱军,何斌.U型金属阻尼器的力学公式推导及阻尼性能研究[J].结构工程师, 2017, 33(2).
ZHAO Zhen-zhen, ZHANG Ai-jun, HE Bin. Study on Mechanics Formula Deduction and Damping Performance of U-shaped Metal Damper[J]. Structural Engineers, 2017, 33(2).
[25] 龙驭球,包世华,袁驷,等.结构力学[M].北京:高等教育出版社,2018.
LONG Yu-qiu, BAO Shi-hua, YUAN Si, et al. Structural Mechanics. Beijing: Higher Education Press,2018.
[26] Kailai Deng, Peng Pan, Chaoyi Wang. Development of crawler steel damper for bridges[J]. Journal of Constructional Steel Research, 2013, 85:140-150.

PDF(2097 KB)

Accesses

Citation

Detail

段落导航
相关文章

/