点缺陷折叠结构声学超材料的声局域化特性

徐驰1,2,陈应航1,2,郭辉3,金文超3,刘涛4,靳奉华3,刘春景1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (16) : 196-201.

PDF(2219 KB)
PDF(2219 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (16) : 196-201.
论文

点缺陷折叠结构声学超材料的声局域化特性

  • 徐驰1,2,陈应航1,2,郭辉3,金文超3,刘涛4,靳奉华3,刘春景1,2
作者信息 +

Sound collection of coiled acoustic metamaterials with point defect

  • XU Chi1,2,CHEN Yinghang1,2,GUO Hui3,JIN Wenchao3,LIU Tao4,JIN Fenghua3,LIU Chunjing1,2
Author information +
文章历史 +

摘要

以折叠结构为基本单元组成点缺陷声学超材料。采用数值模拟和实验分析的方法探索结构低频声局域化机理,分析结构参数对声局域化模态的影响规律。结果表明,该结构在800 Hz以下可产生多个声局域化模态。在频率为222 Hz、362 Hz、385 Hz、408 Hz和511 Hz入射平面波作用下,结构可在中心腔体或周边腔体中实现声压局部放大,这种现象是由于结构内各子腔体的声学虹吸效应或它们之间的耦合共振所致。通过增加中心腔体尺寸、隔板数量、隔板长度,可降低结构声局域化响应频率。实验结果进一步证明了结构在低频范围内具有放大多个频段声波的能力。研究成果可为实现低频宽带声能聚集提供借鉴。

Abstract

An innovative structure, composed of coiled acoustic metamaterials having a point defect, is proposed to collect and amplify the low-frequency broadband acoustic waves. Numerical simulation and experiment were introduced to analyze the sound collection mechanism of the structure. The impacts of the structural parameters on sound collection performances were further studied. Results reveal that the center and around cavities obviously amplify the sound pressures under the excitation of incident waves at 222 Hz, 362 Hz, 385 Hz, 408 Hz and 511 Hz. These characteristics can be attributed to the acoustic siphon effect of different cavities and their coupling resonances. The regulation of sound collection effect can be achieved by matching the structural parameters. In general, a structure tends to have better broadband low-frequency sound collection when it has a larger center cavity, longer and more partitions. The experimental results prove the sound collection of the proposed structure. Those results obtained herein, can be used as a guide toward achieving low-frequency broadband sound energy collection.

关键词

声局域化 / 声学超材料 / 空间折叠结构 / 点缺陷

Key words

sound collection / acoustic metamaterials / coiled structure / point defect

引用本文

导出引用
徐驰1,2,陈应航1,2,郭辉3,金文超3,刘涛4,靳奉华3,刘春景1,2. 点缺陷折叠结构声学超材料的声局域化特性[J]. 振动与冲击, 2023, 42(16): 196-201
XU Chi1,2,CHEN Yinghang1,2,GUO Hui3,JIN Wenchao3,LIU Tao4,JIN Fenghua3,LIU Chunjing1,2. Sound collection of coiled acoustic metamaterials with point defect[J]. Journal of Vibration and Shock, 2023, 42(16): 196-201

参考文献

[1] CHOI J, JUNG I, KANG C-Y. A brief review of sound energy harvesting [J]. Nano Energy, 2019, 56: 169-83.
[2] WANG Y, ZHU X, ZHANG T, et al. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film [J]. Applied Energy, 2018, 230: 52-61.
[3] IFTIKHAR A, HASSAN A, ANJUM M U, et al. Ambient Acoustic Energy Harvesting using Two Connected Resonators with Piezoelement for Wireless Distributed Sensor Network [J]. Acoustical Physics, 2019, 65(5): 471-7.
[4] GUO H, WANG Y, WANG X, et al. Investigation on acoustic energy harvesting based on quarter-wavelength resonator phononic crystals [J]. Advances in Mechanical Engineering, 2018, 10(1): 168781401774807.
[5] EGHBALI P, YOUNESIAN D, FARHANGDOUST S. Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators [J]. Applied Energy, 2020, 270: 115217.
[6] LIU G-S, PENG Y-Y, LIU M-H, et al. Broadband acoustic energy harvesting metasurface with coupled Helmholtz resonators [J]. Applied Physics Letters, 2018, 113(15) : 153503.
[7] 高东宝, 刘选俊, 田章福,等. 一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究[J]. 物理学报, 2017(1): 014307.
GAO D-B, LIU X-J, TIAN Z-F, et al. A broadband low-frequency sound insulation structure based on two-dimensionally inbuilt Helmholtz resonator [J]. Acta Physica Sinica, 2017, 66(1) : 014307.
[8] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器[J]. 物理学报, 2019, 68(03): 034301.
ZHAI S-L, WANG Y-B, ZHAO X-P. A kind of tunable acoustic metamaterial for low frequency absorption [J]. Acta Physica Sinica, 2019, 68(3): 034301.
[9] QI S, OUDICH M, LI Y, et al. Acoustic energy harvesting based on a planar acoustic metamaterial [J]. Applied Physics Letters, 2016, 108(26) : 263501.
[10] MA K-J, TAN T, LIU F-R, et al. Acoustic energy harvesting enhanced by locally resonant metamaterials [J]. Smart Materials and Structures, 2020, 29(7) : 075025.
[11] LV H, TIAN X, WANG M Y, et al. Vibration energy harvesting using a phononic crystal with point defect states [J]. Applied Physics Letters, 2013, 102(3) : 034103.
[12] WANG X, SUN H, CHEN T, et al. Enhanced acoustic localization in the two-dimensional phononic crystals with slit tube defect [J]. Physics Letters A, 2019, 383(29) : 125918.
[13] 田源, 葛浩, 卢明辉,等. 声学超构材料及其物理效应的研究进展[J]. 物理学报, 2019, 68(19):194301.
TIAN Y, GE H, LU M-H, et al. Research advances in acoustic metamaterials [J]. Acta Physica Sinica, 2019, 68(19): 194301.
[14] YUAN M, CAO Z, LUO J, et al. Helix structure for low frequency acoustic energy harvesting [J]. Review of Scientific Instruments, 2018, 89(5): 055002.
[15] QI S, ASSOUAR B. Acoustic energy harvesting based on multilateral metasurfaces [J]. Applied Physics Letters, 2017, 111(24): 234506.
[16] MAN X, LIU T, XIA B, et al. Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale [J]. Journal of Sound and Vibration, 2018, 423: 322-39.
[17] WANG X, ZHOU Y, SANG J, et al. A generalized model for space-coiling resonators [J]. Applied Acoustics, 2020, 158:  107045.
[18] LIANG Z, FENG T, LOK S, et al. Space-coiling metamaterials with double negativity and conical dispersion [J]. Scientific Reports, 2013, 3: 1614.
[19] XU C, GUO H, CHEN Y, et al. Study on broadband low-frequency sound insulation of multi-channel resonator acoustic metamaterials [J]. AIP Advances, 2021, 11(4): 045321.
[20] WU X, ZHANG M, ZUO S, et al. An investigation on interior noise reduction using 2D locally resonant phononic crystal with point defect on car ceiling [J]. Journal of Vibration and Control, 2018, 25(2): 386-96.
[21] SHAKERI A, DARBARI S, MORAVVEJ-FARSHI M K. Designing a tunable acoustic resonator based on defect modes, stimulated by selectively biased PZT rods in a 2D phononic crystal [J]. Ultrasonics, 2019, 92: 8-12.
[22] LIU C R, WU J H, LU K, et al. Acoustical siphon effect for reducing the thickness in membrane-type metamaterials with low-frequency broadband absorption [J]. Applied Acoustics, 2019, 148: 1-8.
[23] WU L-Y, CHEN L-W, LIU C-M. Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions [J]. Physics Letters A, 2009, 373(12-13): 1189-95.
[24] WU L-Y, CHEN L-W, LIU C-M. Acoustic energy harvesting using resonant cavity of a sonic crystal [J]. Applied Physics Letters, 2009, 95(1):013506.

PDF(2219 KB)

Accesses

Citation

Detail

段落导航
相关文章

/