基于ACMD与改进MOMEDA的滚动轴承故障诊断

石佳,黄宇峰,王锋

振动与冲击 ›› 2023, Vol. 42 ›› Issue (16) : 218-226.

PDF(4932 KB)
PDF(4932 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (16) : 218-226.
论文

基于ACMD与改进MOMEDA的滚动轴承故障诊断

  • 石佳,黄宇峰,王锋
作者信息 +

A method of fault diagnosis of rolling bearings based on ACMD and improved MOMEDA

  • SHI Jia,HUANG Yufeng,WANG Feng
Author information +
文章历史 +

摘要

针对强背景噪声下滚动轴承故障特征难以提取的问题,提出基于自适应非线性调频分量分解(adaptive chirp mode decomposition ,ACMD)与改进多点优化最小熵解卷积(improved multipoint optimal minimum entropy deconvolution adjusted ,IMOMEDA)的故障诊断方法。①为提高信号信噪比,采用基于基尼系数(GI)指标的ACMD,进行信号重构预处理;②为提高参数设定的准确性,提出改进的MOMEDA方法——利用天鹰优化(AO)算法,以多点峭度(MK)最大为目标,寻优确定滤波器周期参数;③对信号进行包络谱分析,通过对比包络谱的主导频率成分与理论故障特征频率,判断故障类型。仿真及实测数据分析结果表明,该方法能有效提取强背景噪声下的滚动轴承故障信号的特征信息,具备一定的优越性与实用性。

Abstract

As it is difficult to extract features of rolling bearings under strong background noise, a rolling bearing fault diagnosis method based on the adaptive chirp mode decomposition (ACMD) and the improved multipoint optimal minimum entropy deconvolution adjusted (IMOMEDA) was proposed. Firstly, the ACMD was integrated with a Gini index-based regrouping scheme to improve the signal-to-noise ratio. Secondly, an improved MOMEDA was proposed. In the method, the multipoint kurtosis (MK) value was used as an objective function, applying the Aquila Optimizer (AO) to get the optimal period parameter of MOMEDA self-adaptively for the accuracy of parameter setting. Finally, signal envelope spectrum analysis was used to determine the fault location. The simulation and analysis results of the measured data show that the proposed method can effectively extract the features of the rolling bearing fault signals under strong background noise, and has certain superiority and practicality.

关键词

自适应非线性调频分量分解 / 基尼系数 / 天鹰优化算法 / 多点最优调整最小熵解卷积 / 滚动轴承 / 故障诊断

Key words

Adaptive Chirp Mode Decomposition / Gini Index / Aquila Optimizer / Multipoint Optimal Minimum Entropy Deconvolution Adjusted / rolling bearing / fault diagnosis

引用本文

导出引用
石佳,黄宇峰,王锋. 基于ACMD与改进MOMEDA的滚动轴承故障诊断[J]. 振动与冲击, 2023, 42(16): 218-226
SHI Jia,HUANG Yufeng,WANG Feng. A method of fault diagnosis of rolling bearings based on ACMD and improved MOMEDA[J]. Journal of Vibration and Shock, 2023, 42(16): 218-226

参考文献

[1] 陈再刚, 刘禹清, 周子伟, 等. 轨道交通牵引动力传动系统动力学研究综述 [J]. 交通运输工程学报, 2021, 21(06): 31–49.
CHEN Zai-gang, LIU Yu-qing, ZHOU Zi-wei, et al. Summary of dynamics research on traction power transmission system of rail transits [J]. Journal of Traffic and Transportation Engineering, 2021, 21(06): 31–49.
[2] 陈子旭, 朱振杰, 卢国梁. 一种新的图谱域滚动轴承早期故障检测与识别方法 [J]. 振动与冲击, 2022, 41(6): 51–59.
CHEN Zi-xu, ZHU Zhen-jie, LU Guo-liang. Novel early fault detection and diagnosis for rolling element bearings in graph spectrum domain [J]. Journal of vibration and shock, 2022, 41(6): 51–59.
[3] Cheng Y, Chen B Y, Zhang W H. Adaptive Multipoint Optimal Minimum Entropy Deconvolution Adjusted and Application to Fault Diagnosis of Rolling Element Bearings [J]. IEEE Sensors Journal, 2019, 19(24): 12153–12164.
[4] 周涛, 赵明, 郭栋, 等. 基于信号子空间的新型盲解卷积方法 [J]. 振动与冲击, 2022, 41(3): 139–147.
ZHOU Tao, ZHAO Ming, GUO Dong, et al. A new blind deconvolution method based on signal subspace [J]. Journal of vibration and shock, 2022, 41(3): 139–147.
[5] 胡爱军, 严家祥, 白泽瑞. 基于MOMEDA和增强倒频谱的风电机组齿轮箱多故障诊断方法 [J]. 振动与冲击, 2021, 40(7): 268–273.
HU Ai-jun, YAN Jia-xiang, BAI Ze-rui. Multi-fault diagnosis method for wind turbine gearbox based on MOMEDA and enhanced cepstrum [J]. Journal of vibration and shock, 2021, 40(7): 268–273.
[6] 祝小彦, 王永杰. 基于MOMEDA与Teager能量算子的滚动轴承故障诊断 [J]. 振动与冲击, 2018, 37(06): 104-110+123.
ZHU Xiao-yan, WANG Yong-jie. Fault diagnosis of rolling bearings based on the MOMEDA and Teager energy operator [J]. Journal of vibration and shock, 2018, 37(06): 104-110+123.
[7] 刘志慧, 徐兴平, 牛怀磊, 等. 基于EEMD的立管涡激振动响应最优降噪光滑模型参数识别研究 [J]. 振动与冲击, 2022, 41(12): 254–260.
LIU Zhi-hui, XU Xing-ping, NIU Huai-lei, et al. A study on parameter identification of optimal noise reduction smooth model for vortex-induced vibration response of riser based on EMD [J]. Journal of vibration and shock, 2022, 41(12): 254–260.
[8] 赵雅琴, 聂雨亭, 吴龙文, 等. 基于脊路跟踪的变分非线性调频模态分解方法 [J]. 浙江大学学报:工学版, 2020, 54(10): 1874–1882.
ZHAO Ya-qin, NIE Yu-ting, WU Long-wen, et al. Multi-component signal separation using variational nonlinear chirp mode decomposition based on ridge tracking [J]. Journal of Zhejiang University: Engineering Science, 2020, 54(10): 1874–1882.
[9] Chen S Q, Dong X J, Peng Z K, et al. Nonlinear Chirp Mode Decomposition: A Variational Method [J]. IEEE Transactions on Signal Processing, 2017, 65(22): 6024–6037.
[10] Chen S Q, Yang Y, Peng Z K, et al. Adaptive chirp mode pursuit: Algorithm and applications [J]. Mechanical Systems and Signal Processing, 2019, 116: 566–584.
[11] Ma J, Wang X Y. Compound Fault Diagnosis of Rolling Bearing Based on ACMD, Gini Index Fusion and AO-LSTM [J]. Symmetry, 2021, 13(12): 2386.
[12] Xin G, Zhong Q T, Li Z, et al. Incipient Fault Autonomous Identification Method of Train Axle Box Bearing Based on Ginigram and CHMR. [J]. Zhongguo Tiedao Kexue/China Railway Science, 2022, 43(2): 104–114.
[13] Chen S Q, Wang K Y, Chang C, et al. A two-level adaptive chirp mode decomposition method for the railway wheel flat detection under variable-speed conditions [J]. Journal of Sound and Vibration, 2021, 498(4): 115963.
[14] 刘岩, 伍星, 刘韬, 等. 基于自适应MOMEDA与VMD的滚动轴承早期故障特征提取 [J]. 振动与冲击, 2019, 38(23): 219–229.
LIU Yan, WU Xing, LIU Tao, et al. Feature extraction for rolling bearing incipient faults based on adaptive MOMEDA and VMD [J]. Journal of vibration and shock, 2019, 38(23): 219–229.
[15] 齐咏生, 樊佶, 李永亭, 等. 一种改进的解卷积算法及其在滚动轴承复合故障诊断中的应用 [J]. 振动与冲击, 2020, 39(21): 140–150.
QI Yong-sheng, FAN Ji, LI Yong-ting, et al. An improved deconvolution algorithm and its application in compound fault diagnosis of rolling bearing [J]. Journal of Vibration and Shock,  2020, 39(21): 140–150.
[16] 韩雪飞, 施展, 华云松. 基于参数优化MOMEDA与CEEMDAN的滚动轴承微弱故障特征提取研究 [J]. 机械强度, 2021, 43(05): 1041–1049.
HAN Xue-fei, SHI Zhan, HUA Yun-song. Weak fault feature of rolling bearing based on parameter optimized MOMEDA and CEEMDAN [J]. Journal of Mechanical Strength, 2021, 43(05): 1041–1049.
[17] Smith W A, Randall R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study [J]. Mechanical Systems and Signal Processing, 2015, 64–65: 100–131.
[18] Abualigah L, Yousri D, Abd Elaziz M, et al. Aquila Optimizer: A novel meta-heuristic optimization algorithm [J]. Computers & Industrial Engineering, 2021, 157.
[19] McDonald. Maximum Correlated Kurtosis Deconvolution (MCKD)[EB/OL]. https://www.mathworks.com/matlabcentral/fileexchange/31326-maximum-correlated-kurtosis-deconvolution-mckd, 2022-08-18.
[20] Wu W Y, Yi C, Bai J, et al. Envelope Harmonic Noise Ratio Based Adaptive Kurtogram and Its Application in Bearing Compound Fault Identification [J]. IEEE Sensors Journal, 2022, 22(9): 8701–8714.
 

PDF(4932 KB)

Accesses

Citation

Detail

段落导航
相关文章

/