运输包装随机振动的加速度响应谱分析

杨松平1,2,3,王志伟1,2,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (16) : 37-46.

PDF(2291 KB)
PDF(2291 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (16) : 37-46.
论文

运输包装随机振动的加速度响应谱分析

  • 杨松平1,2,3,王志伟1,2,3
作者信息 +

Acceleration spectrum analysis for transport packaging under random vibration

  • YANG Songping1,2,3,WANG Zhiwei1,2,3
Author information +
文章历史 +

摘要

正切型运输包装系统的加速度随机振动响应谱理论尚未进行系统研究,然而产品加速度响应是评价产品包装有效性的关键指标,而且很大一部分包装材料在一定变形范围内符合正切型的力-位移关系。将考虑关键部件的运输包装随机振动模型化为两自由度正切型包装系统,建立了系统的加速度响应谱求解方法,讨论了所提方法的适用范围,并采用数值模拟验证了所提方法的有效性。在此基础上,进一步探究了加速度响应谱对于外激强度和系统参数的敏感性,分析了正切型系统的硬弹簧非线性效应。随着激励水平提高,由于正切型刚度“硬弹簧”非线性作用,从而使产品主体的一阶响应峰值点频率及关键件一二阶响应峰值点频率向右偏移逐渐增大;存在一个最佳的系统非线性特征参数β^*,使得关键件的一阶响应峰值或响应总体能量最小;系统的阻尼比、频率比、关键部件与产品的质量比对响应起着十分明显“多阶调频调节带宽”作用。所提方法不仅能够有效的预测产品主体和关键件的响应,也为包装优化设计提供理论依据。

Abstract

It has not been systematically studied on the theory for acceleration response spectrum of tangential transport packaging system under random vibration, but acceleration response is a key index to evaluate the effectiveness of product packaging, in addition, a large proportion of packaging materials conform to tangent type of force-displacement relationships within a certain deformation range. So the transport package considering critical component under random vibration was modeled as two degrees of freedom tangential packaging system, and the approximate solution method of the acceleration response spectrum was established. Meanwhile, the application scope of the proposed method was pointed out. The numerical simulation was carried out to validate the method, on this basis, the sensitivity of the acceleration response spectrum to external excitation intensity and system parameters was explored further, and the nonlinear effect of tangential hard spring was also analyzed. Due to the effect of the “hard spring” of tangent system stiffness, the frequency at the first-order resonance peak point of the product body and the first-order and second-order resonance peak points of the critical component acceleration responses were increasing to the right. There exists an optimal nonlinear characteristic parameter β^*, which can minimize the first-order response peak or the overall response energy of the critical component. System damping ratio, frequency ratio, critical component and product quality ratio play a very obvious “multiple order frequency modulation to adjust bandwidth” role on the response. The proposed method can not only effectively predict the response of product body and critical part, but also provide a theoretical basis for the packaging optimal design.

关键词

运输包装 / 随机振动 / 关键部件 / 加速度响应 / 功率谱

Key words

transport packaging / random vibration / critical component / acceleration response / power spectral density

引用本文

导出引用
杨松平1,2,3,王志伟1,2,3. 运输包装随机振动的加速度响应谱分析[J]. 振动与冲击, 2023, 42(16): 37-46
YANG Songping1,2,3,WANG Zhiwei1,2,3. Acceleration spectrum analysis for transport packaging under random vibration[J]. Journal of Vibration and Shock, 2023, 42(16): 37-46

参考文献

[1] 王志伟,刘博,王立军. 运输包装随机振动疲劳曲线及加速振动试验技术[J].振动工程学报, 2022, 35(02):297-306.
WANG Zhiwei, LIU Bo, WANG Lijun. Random vibration fatigue curve and accelerated vibration test technology of transport package[J]. Journal of Vibration Engineering, 2022, 35(02):297-306.
[2] YANG S P, WANG Z W. Acceleration spectrum analysis of hyperbolic tangent package under random excitation[J]. Packaging Technology and Science, 2021, 34(9):579-587.
[3] 王志伟. 运输包装[M]. 北京:中国轻工业出版社, 2020.
WANG Zhiwei. Transport packaging[M]. Beijing: China Light Industry Press, 2020.
[4] 霍银磊. 包装动力学理论研究进展[J]. 包装工程, 2010, 31(13): 122-127.
HUO Yinlei. Progress in theoretical research of packaging dynamics [J]. Packaging Engineering, 2010, 31(13): 122-127.
[5] WANG Z W, HU C Y. Shock spectra and damage boundary curves for nonlinear package cushioning system[J]. Packaging Technology and Science, 1999, 12 (5) :207-217.
[6] 王军,王志伟.半正弦脉冲激励下考虑易损件的正切型包装系统冲击特性研究[J]. 振动与冲击,2008, 27 (1):167-168.
WANG Jun, WANG Zhi-wei. Dimensional shock response spectra characterizing shock response of a tangent packaging system with critical component[J]. Journal of Vibration and Shock, 2008, 27(1):167-168.
[7] WANG J, DUAN F, JIANG J H, et al. Dropping damage evaluation for a hyperbolic tangent cushioning system with a critical component[J]. Journal of Vibration and Control, 2012, 18(10): 1417-1421.
[8] 王军, 王志伟. 考虑易损件的正切型包装系统冲击破损边界曲面研究[J].振动与冲击, 2008(02):166-167+185.
WANG Jun, WANG Zhi-wei. Damage boundary surface of a tangent nonlinear packaging system with critical component [J]. Journal of Vibration and Shock, 2008(02):166-167+185.
[9] JIANG J H, WANG Z W. Dropping damage boundary curves for cubic and hyperbolic tangent packaging systems based on key component[J]. Packaging Technology and Science, 2011, 25(7): 397-411.
[ 0] 卢富德, 高德, 梁爱锋. 立方非线性双层包装在矩形方波冲击下破损边界曲线的研究[J].包装工程, 2008, 29(12): 7-10.
LU Fu-de, GAO De, LIANG Ai-feng. Study of damage boundary curve of cubic non-linear double layer package under rectangular pulse[J]. Packaging Engineering, 2008, 29(12): 7-10.
[ 1] 高德, 卢富德. 考虑转动的双曲正切与正切组合模型缓冲系统冲击响应研究[J]. 振动工程学报, 2012, 25(01): 6-11.
GAO De, LU Fu-de. The shock response of hyperbolic tangent and tangent comprehensive model on cushion system considering rotary motion[J]. Journal of Vibration Engineering, 2012,25(1):6-11.
[ 2] 郭蓓蓓, 王军. 正切型非线性包装系统跌落冲击响应分析的同伦摄动法与修正[J]. 振动与冲击, 2018, 37(22):111-114+121.
GUO Beibei, WANG Jun. Correction of the homotopy perturbation method for analyzing dropping shock response of a tangent nonlinear packaging system[J]. Journal of Vibration and Shock, 2018, 37(22):111-114+121.
[ 3] 霍银磊, 刘彦亨, 陈无忌. 正切非线性包装系统跌落冲击的MSLP解[J]. 振动与冲击, 2022, 41(11):266-270.
HUO Yinlei, LIU Yanheng, CHEN Wuji. MSLP solution to dropping shock of nonlinear packaging system[J]. Journal of Vibration and Shock, 2022, 41(11):266-270.
[ 4] SONG H Y. A modification of homotopy perturbation method for a hyperbolic tangent oscillator arising in nonlinear packaging system[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019, 38(3–4):914–917.
[ 5] 金潇明. 包装系统在随机振动下的破坏准则与疲劳计算[J]. 株洲工学院学报, 1999, 13(1): 13-16.
JIN Xiaoming. Failure criterion and fatigue calculation of packaging system under random vibration [J]. Journal of Zhuzhou Institute of Technology, 1999, 13(1): 13-16.
[ 6] 汤伯森, 向红. 用脉冲响应法求解包装件的随机振动问题[J]. 包装工程, 2000, 21(03): 4-8.
TANG Bosen, XIANG Hong. Calculating random vibration of product package system with the method of pulse response[J]. Packaging Engineering, 2000, 21(03): 4-8.
[ 7] ROUILLARD V. The dynamic behavior of stacked shipping units during transport. Part 1: model validation[J]. Packaging Technology and Science, 2004, 17(5): 237-247.
[ 8] 徐伟民, 孙国正. 路面脉冲激励下汽车运输包装产品响应的数值仿真[J]. 包装工程, 2004, 25(04): 163-165.
XUN Weiming, SUN Guozheng. Numerical simulation of packaging product dynamic response under road pulse excitation [J]. Packaging Engineering, 2004, 25(04): 163-165.
[ 9] 张秀梅, 徐伟民. 路面多种激励下汽车运输包装产品动态响应的数值仿真[J]. 包装工程, 2006, 27(01): 67-70.
ZHANG Xiumei, XUN Weiming. Numerical simulation of package product dynamic response under two excitations[J]. Packaging Engineering, 2006, 27(01): 67-70.
[20] 李晓刚. 运输包装系统随机振动频域分析[J]. 包装工程, 2012, 33(15): 50-54.
LI Xiao-gang. Random vibration frequency domain analysis of transport packaging system[J]. Packaging Engineering, 2012,33(15):50-54.
[2 ] 杜恒. 基于不同堆码形式的运输包装件动力学特性仿真研究[D]. 东南大学, 2015.
DU Heng. Simulation research on transport package dynamic based on different stacking forms[D]. Southeast University, 2015.
[22] 王志伟, 戚德彬. 两层计算机堆码包装动力学试验研究[J]. 机械工程学报, 2017, 53(3): 90-99.
WANG Zhiwei, QI Debin. Experimental study of dynamic response of two layers stacked packaging units of computers[J]. Journal of Mechanical Engineering, 2017, 53(3): 90-99.
[23] 朱大鹏. 非线性包装系统中关键部件振动可靠度分析[J]. 振动与冲击, 2019, 38(18):109-114+134.
ZHU Dapeng. Vibration reliability analysis for critical component of nonlinear package system[J]. Journal of
Vibration and Shock, 2019, 38(18):109-114+134.
[24] 朱位秋. 随机动力学引论[M]. 北京:科学出版社, 2017.
ZHU Weiqiu. Introduction to Stochastic Dynamics[M]. Beijing: Science Press, 2017.
[25] SOCHA L, SOONG T T. Linearization in analysis of nonlinear stochastic systems[J]. Applied Mechanics Reviews, 1991, 44(10): 399-422.
[26] WU W F, LIN Y K. Cumulant-neglect closure for non-linear oscillators under random parametric and external excitations[J]. International Journal of Non-linear Mechanics, 1984, 19(4): 349-362.
[27] ITO K. On stochastic differential equations[J]. Memoirs of the American Mathematical Society. 1951, (4): 289-302.
[28] 王军. 产品破损评价及其防护包装动力学理论研究[D]. 江南大学, 2009.
WANG Jun. Theoretical study on product damage evaluation and protective packaging dynamics[D]. Jiangnan University, 2009.
[29] 龙复兴, 张旭, 顾平等. 调谐质量阻尼器系统控制结构地震反应的若干问题[J]. 地震工程与工程振动, 1996, 16(2):87-87.
LONG Fuxin, ZHANG Xu, GU Ping, et al. The problems of structural seismic control of tuned mass damper system[J]. Earthquake Engineering and Engineering Vibration, 1996, 16(2):87-87.
[30] DEN HARTOG J P. Mechanical Vibration, 4th edn[M]. New York: Mc Graw-Hill, 1956.

PDF(2291 KB)

815

Accesses

0

Citation

Detail

段落导航
相关文章

/