大跨度钢管混凝土劲性骨架拱桥地震易损性分析

王志远,赵人达,吴鑫睿,赵成功

振动与冲击 ›› 2023, Vol. 42 ›› Issue (16) : 72-81.

PDF(3210 KB)
PDF(3210 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (16) : 72-81.
论文

大跨度钢管混凝土劲性骨架拱桥地震易损性分析

  • 王志远,赵人达,吴鑫睿,赵成功
作者信息 +

Seismic vulnerability analysis of long-span CFST stiff-skeleton concrete arch bridges

  • WANG Zhiyuan,ZHAO Renda,WU Xinrui,ZHAO Chenggong
Author information +
文章历史 +

摘要

为了探究完善钢管混凝土劲性骨架拱桥的地震损伤评估方法,以一座上承式高速铁路劲性骨架拱桥为工程实例,开展同种桥型的地震易损性研究。首先基于OpenSEES平台建立拱桥的非线性数值模型;然后通过非线性动力时程分析及增量动力分析(IDA)对主拱肋子构件、交界墩及拱上立柱的地震损伤进行评估;最后引入两种Copula函数建立串联体系下主拱肋构件系统的易损性曲线,并将其与子构件及基于第一可靠度原理的系统易损性进行对比。结果表明:三向地震动作用下,主拱肋外包混凝土的损伤概率与损伤程度均明显大于钢管混凝土,且后者的易损位置将随着PGA的增大而发生从跨中向拱脚的改变;主拱肋系统的易损性更偏向于外包混凝土,L/4拱肋截面的损伤概率最大;交界墩与拱上立柱的保护层混凝土的易损性水平显著高于纵向钢筋和核心混凝土,位于L/4拱肋位置的立柱损伤概率最大。抗震设计时应重点考虑对易损部位采取加强的设防措施。

Abstract

To further explore and improve the seismic damage assessment method for concrete-filled steel tube (CFST) stiff skeleton concrete arch bridge, a deck type high-speed railway stiff-skeleton concrete arch bridge was taken as the engineering example to carry out a study on the seismic vulnerability of the same bridge type. Firstly, a non-linear numerical model of the arch bridge was established based on the OpenSEES platform. Then the seismic damage of the main arch rib sub-members, junction piers and arch columns was assessed by non-linear dynamic time analysis and incremental dynamic analysis (IDA). Finally, two Copula functions were introduced to establish the susceptibility curves of the main arch rib system in the tandem system and compare them with the sub-members and the system susceptibility based on the first reliability principle. The vulnerability of the system was compared with that of the subcomponents and the system based on the first reliability principle. The results show that the damage probability and the damage level of the main arch rib outsourced concrete are significantly higher than that of the concrete filled steel tube under the action of three-way ground vibration, and the vulnerable position of the latter will change from the middle of the span to the arch springing as the PGA increases. The vulnerability of the concrete in the protective layer of the junction pier and the column on the arch is significantly higher than that of the longitudinal reinforcement and core concrete, and the column at the L/4 arch rib location has the highest probability of damage. The columns located at the L/4 arch ribs have the highest probability of damage. The seismic design should focus on the strengthening of vulnerable areas.

关键词

钢管混凝土劲性骨架拱桥 / 地震易损性 / 主拱肋构件系统 / Copula函数 / 相关性

Key words

concrete-filled steel tube stiff-skeleton concrete arch bridge / seismic vulnerability / the main arch system / Copula function / correlation

引用本文

导出引用
王志远,赵人达,吴鑫睿,赵成功. 大跨度钢管混凝土劲性骨架拱桥地震易损性分析[J]. 振动与冲击, 2023, 42(16): 72-81
WANG Zhiyuan,ZHAO Renda,WU Xinrui,ZHAO Chenggong. Seismic vulnerability analysis of long-span CFST stiff-skeleton concrete arch bridges[J]. Journal of Vibration and Shock, 2023, 42(16): 72-81

参考文献

[1] 陈列, 徐勇, 谢海清, 等. 高速铁路大跨度钢筋混凝土拱桥设计原理[M]. 北京: 人民交通出版社股份有限公司, 2020.
 [2] 庄卫林, 刘振宇, 蒋劲松. 汶川大地震公路桥梁震害分析及对策[J]. 岩石力学与工程学报, 2009,28(07): 1377-1387.
ZHUANG Weilin, LIU Zhenyu, JIANG Jinsong. Earthquake-induced damage analysis of highway bridges in Wenchuan earthquake and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (07): 1377-1387.
 [3] 庄卫林. 汶川地震公路震害分析-桥梁与隧道[M]. 北京: 人民交通出版社, 2013.
 [4] 刘珍. 钢管混凝土劲性骨架拱桥静动力力学性能分析[D]. 北京: 北京交通大学, 2019.
 [5] 刘龙. 特大跨度钢管混凝土劲性骨架拱桥抗震性能研究[D]. 成都: 西南交通大学, 2012.
 [6] SHAO C, JU J W, HAN G, et al. Seismic applicability of a long-span railway concrete upper-deck arch bridge with CFST rigid skeleton rib[J]. Structural Engineering and Mechanics, 2017,61(5): 645-655.
 [7] 邹建波. 基于防屈曲支撑的钢管混凝土劲性骨架拱桥减震耗能研究[D]. 成都: 西南交通大学, 2019.
 [8] 谢松茂. 劲性骨架混凝土拱桥地震反应分析及减隔震控制[D]. 南宁: 广西大学, 2022.
 [9] ZHAO C, DUANA J, TANGA C, et al. Seismic Performance Analysis of CFST Stiff Skeleton Concrete Arch Bridge considering Non-planar Sectional Stress Induced by Balanced Ring-casting Construction[J]. Journal of Earthquake Engineering, 2021,1997837.
[10] ZHANG L W, LU Z H, CHEN C. Seismic fragility analysis of bridge piers using methods of moment[J]. Soil Dynamics and Earthquake Engineering, 2020,134: 106150.
[11] WEI B, HU Z, HE X, et al. Evaluation of optimal ground motion intensity measures and seismic fragility analysis of a multi-pylon cable-stayed bridge with super-high piers in Mountainous Areas[J]. Soil Dynamics and Earthquake Engineering, 2020,129: 105945.
[12] 石岩, 熊利军, 李军, 等. 考虑内力状态的连续刚构桥典型施工阶段地震易损性分析[J]. 振动与冲击, 2021,40(24): 136-143.
SHI Yan, XIONG Lijun, Li Jun, et al. Seismic fragility analysis of continuous rigid-frame bridge during typical construction stages considering internal force state [J]. Journal of Vibration and Shock, 2021,40 (24): 136-143.
[13] 卓卫东, 颜全哲, 吴梅容, 等. 中承式钢管混凝土拱桥地震易损性分析[J]. 铁道学报, 2019,41(05): 126-132.
ZHUO Weidong, YAN Quanzhe, WU Meirong, et al. Seismic fragility analysis of half-through concrete filled steel tubular arch bridge [J]. Journal of the China Railway Society, 2019, 41 (05): 126-132.
[14] 邹赵勇. 钢管混凝土叠合柱桥墩地震易损性分析[D]. 成都: 西南交通大学, 2016.
[15] WEI B, WANG W, WANG P, et al. Seismic Responses of a High-speed Railway (HSR) Bridge and Track Simulation under Longitudinal Earthquakes[J]. Journal of Earthquake Engineering, 2020,26(3): 1-22.
[16] 国巍, 王阳, 葛苍瑜, 等. 近断层地震动下高速铁路多跨简支梁桥震致破坏特征[J]. 振动与冲击, 2020,39(17): 210-218.
GUO wei, WANG Yang, GE Cangyu, et al. Seismic failure features of multi-span simply supported girder bridges of high-speed railway under near-fault earthquake [J]. Journal of Vibration and Shock, 2020, 39 (17): 210-218.
[17] JAMIE E P, REGINALD D. Methodology for the development of analytical fragility curves for retrofitted bridges[J]. Earthquake Engineering & Structural Dynamics, 2008,37(8): 1157-1174.
[18]  CORNELL C A , JALAYER F,  HAMBURGER R O, et al. Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines[J]. Journal of Structural Engineering, 2002,128(4).
[19] User's manual: HAZUS99 [S]. Washington, D.C.: Federal Emergency Management Agency, 1999.
[20] 宋帅. 考虑构件相关性的桥梁系统地震易损性分析方法研究[D]. 成都: 西南交通大学, 2017.
[21] ROGER B N. An Introduction to Copulas (Springer Series in Statistics)[M]. New York:Springer Series, 2006.
[22] DURANTE F, SEMPI C. Principles of copula theory[M]. Boca Raton, FL: CRC Press Inc, 2015.
[23] 樊学平, 杨光红, 肖青凯, 等. 考虑安全性的桥梁主梁体系可靠性动态藤Copula预测[J]. 同济大学学报(自然科学版), 2020,48(02): 165-175.
FAN Xueping, YANG Guanghong, XIAO Qingkai, et al. Dynamic vine-copula prediction approach of bridge girder system reliability considering structural safety [J]. Journal of Tongji University (Natural Science), 2020, 48 (02): 165-175.
[24] 周长东, 田苗旺, 张许, 等. 考虑多维地震作用的高耸钢筋混凝土烟囱结构易损性分析[J]. 土木工程学报, 2017,50(03): 54-64.
ZHOU Changdong, TIAN Miaowang, ZHANG Xu, et al. Seismic fragility analysis for high-rise RC chimney considering multi-dimensional seismic actions [J]. China Civil Engineering Journal, 2017,50 (03): 54-64.
[25] 吕西林, 苏宁粉, 周颖. 复杂高层结构基于增量动力分析法的地震易损性分析[J]. 地震工程与工程振动, 2012,32(05): 19-25.
LV Xilin, SU Ningfen, ZHOU Ying. IDA-based seismic fragility analysis of a complex high-rise structure [J]. Earthquake Engineering and Engineering Vibration, 2012,32 (05): 19-25.
[26] 魏冬寒. 大跨度劲性骨架混凝土拱桥受力特性研究[D]. 石家庄: 石家庄铁道大学, 2019.
[27] EUNSOO C, REGINALD D, BRYANT N. Seismic fragility of typical bridges in moderate seismic zones[J]. Engineering Structures, 2003,26(2): 187-199.
[28] 唐堂, 钱永久. 既有大跨度混凝土拱桥震害机理分析[J]. 地震工程学报, 2016,38(05): 701-706.
TANG Tang, QIAN Yongjiu. Mechanism of seismic damage of a large-span concrete arch bridge[J]. China Earthguake Engineering Journal, 2016,38 (05): 701-706.

PDF(3210 KB)

Accesses

Citation

Detail

段落导航
相关文章

/