一种多轴向耦合随机激励下缺口试件振动疲劳寿命预测方法

骆政波1,范鑫1,刘峰1,陈怀海2,郑荣慧2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 105-113.

PDF(2042 KB)
PDF(2042 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 105-113.
论文

一种多轴向耦合随机激励下缺口试件振动疲劳寿命预测方法

  • 骆政波1,范鑫1,刘峰1,陈怀海2,郑荣慧2
作者信息 +

A method for predicting vibration fatigue life of notched specimens under multi-axial coupled random excitation

  • LUO Zhengbo1, FAN Xin1, LIU Feng1, CHEN Huaihai2, ZHENG Ronghui2
Author information +
文章历史 +

摘要

提出了一种多轴向耦合随机激励下缺口结构振动疲劳寿命预测的频域分析方法。首先,实施了缺口试件的双轴向随机振动疲劳试验,研究了两个振动轴向上载荷谱之间的相干性和相位差对缺口试件疲劳损伤的影响规律;然后,通过随机振动分析计算得到试件缺口根部各节点的应力功率谱密度矩阵,并假设缺口试件裂纹萌生点为历经von Mises应力最大均方根值的节点;紧接着,缺口试件疲劳临界点可由疲劳裂纹初始点和修正临界距离理论确定;最后,在疲劳临界点处通过Carpinteri-Spagnoli频域准则计算缺口试件的振动疲劳寿命,并与试验结果进行了对比。结果表明:该多轴缺口疲劳预测方法具有较高的预测精度,绝大部分预测结果都在3倍误差带内。

Abstract

A frequency domain analysis model for the vibration fatigue life assessment of a notched specimen under multiaxial coupled random base excitations is proposed in the present paper. Firstly, the influence of coupling relationship between the PSD functions in two vibration directions on the fatigue damage of a notched specimen are deeply studied through the implement of biaxial random vibration fatigue test. Then, the stress PSD matrix of each node at the notch root is calculated by the random vibration analysis with the finite element method, and the crack initiation point of the notched specimen is assumed as the node experiencing the maximum root mean square value of von Mises stress. Next, the fatigue critical point of the notched specimen can be determined by the modified TCD combined with the crack initiation point. Finally, the vibration fatigue life of the notch specimen is computed by the frequency domain formulation of the Carpinteri-Spagnoli criterion. The result demonstrates that the multiaxial notch vibration fatigue life assessment model can provide the fatigue life evaluation with high accuracy, and the majority of the estimated fatigue lives are within 3 time scatter band.

关键词

振动疲劳 / 多轴向随机基础激励 / 相干性 / 临界距离理论 / Carpinteri-Spagnoli准则

Key words

vibration fatigue / multiaxial random base excitations / coherence / theory of critical distance / Carpinteri-Spagnoli criterion.

引用本文

导出引用
骆政波1,范鑫1,刘峰1,陈怀海2,郑荣慧2. 一种多轴向耦合随机激励下缺口试件振动疲劳寿命预测方法[J]. 振动与冲击, 2023, 42(17): 105-113
LUO Zhengbo1, FAN Xin1, LIU Feng1, CHEN Huaihai2, ZHENG Ronghui2. A method for predicting vibration fatigue life of notched specimens under multi-axial coupled random excitation[J]. Journal of Vibration and Shock, 2023, 42(17): 105-113

参考文献

[1] 毛森鑫,时寒阳,李开响,等.振动疲劳载荷谱编制与试验验证[J/OL].航空学报, 2021, 1-15.
Mao Senxin, Shi Hanyang, Li Kaixiang, et al. Compilation and test verification of vibration fatigue load spectrum [J]. Acta Aeronautica et Astronautica Sinica, 2021, 1-15.
[2] 贺光宗, 陈怀海, 贺旭东.一种多轴向随机激励下结构疲劳寿命分析方法[J].振动与冲击, 2015, 34(7):59-63.
He Guangzong, Chen Huaihai, He Xudong. Vibration fatigue life prediction method for structures under multiaxial random excitations [J]. Chinese Journal of Shock and Vibration, 2015, 34(7): 59-63.
[3] 白金,李静,仇原鹰,等.考虑多轴应力与共振影响的随机振动疲劳寿命预测[J].国防科技大学学报, 2021, 43(2): 102-108.
Bai Jin, Li Jing, Qiu Yuanying, et al. Random vibration fatigue life prediction considering the influence of multiaxial stress and resonance [J]. Journal of National University of defense technology, 2021, 43 (02): 102-108.
[4] Benasciutti D, Sherratt F, Cristofori A. Recent developments in frequency domain multi-axial fatigue analysis [J]. International Journal of Fatigue, 2016, 91: 397-413.
[5] Papuga J, Kaľavský A, Lutovinov M, et al. Evaluation of data sets usable for validating multiaxial fatigue strength criteria [J]. International Journal of Fatigue, 2021, 145: 106093.
[6] 孙国芹,尚德广,王杨.金属多轴疲劳行为与寿命预测研究进展[J].机械工程学报, 2021, 57(16): 153-172.
Sun Guoqin, Shang Deguang, Wang Yang. Research Progress on Multiaxial Fatigue Behavior and life prediction of metals [J]. Journal of Mechanical Engineering, 2021, 57 (16): 153-172.
[7] 张世越,吴昊.基于顺序雨流法和临界平面法的多轴变幅低周疲劳寿命评价[J].力学季刊, 2020, 41(03): 465-476.
Zhang Shiyue, Wu Hao. Multiaxial variable amplitude low cycle fatigue life evaluation based on sequential rain flow method and critical plane method [J]. Chinese Quarterly of Mechanics, 2020, 41(03): 465-476.
[8] Langlais TE,Vogel JH, Chase TR. Multiaxial cycle counting for critical plane methods [J]. International Journal of Fatigue, 2003, 25(7): 641-647.
[9] Miner MA. Cumulative damage in fatigue [J]. Journal of Applied Mechanics, 1945, 12(3):159-164.
[10] 嵇应凤,姚卫星,夏天翔.线性疲劳累积损伤准则适用性评估[J].力学与实践, 2015, 37(06): 674-682.
Ji Yingfeng, Yao Weixing, Xia Tianxiang. Applicability evaluation of linear fatigue cumulative damage criterion [J]. Mechanics in Engineering, 2015, 37 (06): 674-682.
[11] Pitoiset X, Preumont A. Spectral methods for multiaxial random fatigue analysis of metallic structures [J]. International Journal of Fatigue, 2000, 22(7): 541-550.
[12] Carpinteri A, Spagnoli A, Vantadori S. Reformulation in the frequency domain of a critical plane-based multiaxial fatigue criterion [J]. International Journal of Fatigue, 2014, 67:55-61.
[13] Luo Z, Chen H, Wang J, et al. Fatigue life calculation of notched specimens by modified Wöhler curve method and theory of critical distance under multiaxial random loading [J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(2): 1-16.
[14] Yaich A, El Hami A. Multiaxial fatigue damage estimation of structures under random vibrations using Matsubara’s criterion [J]. International Journal of Fatigue, 2019, 124: 253-264.
[15] Ge J, Sun Y, Zhou S. Fatigue life estimation under multiaxial random loading by means of the equivalent Lemaitre stress and multiaxial S–N curve methods [J]. International Journal of Fatigue, 2015, 79: 65-74.
[16] Cristofori A, Benasciutti D, Tovo R. A stress invariant based spectral method to estimate fatigue life under multiaxial random loading [J]. International Journal of Fatigue, 2011, 33(7): 887-899.
[17] Tanaka K, Akiniwa Y. Fatigue crack propagation behaviour derived from S–N data in very high cycle regime [J]. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25(8‐9): 775-784.
[18] 吴文涛, 王英玉. 一种新的多轴缺口疲劳寿命预测方法[J]. 飞机设计,2015, 04:41-46+60.
Wu Wentao, Wang Yingyu. A new multiaxial notch fatigue life prediction method [J]. Aircraft Design, 2015, 04:41-46 + 60.
[19] Molski K, Glinka G. A method of elastic-plastic stress and strain calculation at a notch root [J]. Materials Science and Engineering, 1981, 50(1): 93-100.
[20] 刘克格. 多轴加载下缺口件应力应变分析与寿命预测的研究[D]. 北京工业大学, 2003.
Liu Kege. Research on stress-strain analysis and life prediction of notched parts under multiaxial loading [D]. Beijing University of technology, 2003.
[21] Weixing Y. Stress field intensity approach for predicting fatigue life [J]. International Journal of Fatigue, 1993, 15(3): 243-246.
[22] 李玉春,姚卫星,温卫东. 应力场强法在多轴疲劳寿命估算中的应用[J]. 机械强度, 2002, 24(2): 258-261.
Li Yuchun, Yao Weixing, Wen Weidong. Application of stress field strength method in multiaxial fatigue life estimation [J]. Mechanical strength, 2002, 24 (2): 258-261.
[23] Tanaka K. Engineering formulae for fatigue strength reduction due to crack-like notches [J]. International Journal of Fracture, 1983, 22(2): R39-R46.
[24] Taylor D. Geometrical effects in fatigue: a unifying theoretical model [J]. International Journal of Fatigue, 1999, 21(5): 413-420.
[25] Susmel L, Taylor D. On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features [J]. Engineering Fracture Mechanics, 2008, 75(15): 4410-4421.
[26] Davenport AG. Note on the Distribution of the Largest Value of a Random Function with Applications to Gust Loading [J]. Proceedings of the Institution of Civil Engineers, 1964, 28(2):187-196.
[27] Benasciutti D, Tovo R. Spectral methods for lifetime prediction under wide-band stationary random processes [J]. International Journal of fatigue, 2005, 27(8): 867-877.
[28] Neuber H. Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law [J]. Journal of Applied Mechanics, 1961, 28(4):544-550.
[29] Peterson RE. Notch sensitivity [M]. New York: McGraw Hill, 1959, 293–306.
[30] Bellett D, Taylor D, Marco S, et al. The fatigue behaviour of three-dimensional stress concentrations [J]. International Journal of Fatigue, 2005, 27(3): 207-221.
[31] El Haddad MH, Dowling NE, Topper T H, et al. J integral applications for short fatigue cracks at notches [J]. International Journal of Fracture, 1980, 16(1): 15-30.
[32] 王昊元,吴昊.基于改进临界距离法的多轴缺口疲劳寿命预测[J].工程机械,2020,51(09):31-40+7-8.
Wang Haoyuan, Wu Hao. Multiaxial notch fatigue life prediction based on improved critical distance method [J]. Construction machinery and Equipment, 2020, 51 (09): 31-40 + 7-8.
[33] Luo Z, Vantadori S, Ronchei C, et al. Vibration fatigue analysis of circumferentially notched specimens under coupled multiaxial random vibration environments[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(9): 2412-2428.

PDF(2042 KB)

598

Accesses

0

Citation

Detail

段落导航
相关文章

/