一种考虑局部颈缩及损伤演化的改进失效准则在铝合金板冲击有限元分析中的应用

陈楚天1,2,刘斌1,张晓丹3,吴卫国1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 120-127.

PDF(3084 KB)
PDF(3084 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 120-127.
论文

一种考虑局部颈缩及损伤演化的改进失效准则在铝合金板冲击有限元分析中的应用

  • 陈楚天1,2,刘斌1,张晓丹3,吴卫国1
作者信息 +

Application of an improved failure criterion considering local necking and damage evolution in finite element analysis of aluminum alloy plate impact

  • CHEN Chutian1,2, LIU Bin1, ZHANG Xiaodan3, WU Weiguo1
Author information +
文章历史 +

摘要

为快速准确分析铝合金结构在不同冲击载荷作用下的损伤断裂行为,提出了一种由局部颈缩准则和损伤演化模型相结合的、参数易于校准且适用于粗网格的改进失效准则。采用Fortran语言将自定义失效准则嵌入到LS-DYNA程序中完成二次开发,实现了改进的失效准则在数值仿真中的应用。通过对比分析九组试验与仿真结果,验证了改进的失效准则的适用性和准确性。研究结果表明:改进的材料失效准则具有较低的网格依赖性,能够很好地预测铝合金板的塑性破坏程度,可为铝合金结构冲击强度分析提供技术支撑。

Abstract

To analyze rapidly and accurately the fracture behavior of aluminum alloy structures under different impact loads, a revised failure criterion is proposed based on the combination of local necking criterion and damage evolution model. The parameters are calibrated easily and suitable for coarse meshes. The user-defined failure criterion is embedded into LS-DYNA program by Fortran language to complete the secondary development, and the application of the revised failure criterion is realized in numerical simulation. The applicability and accuracy of the revised failure criterion are verified by comparing the nine experimental and numerical results. It shows that the material failure criterion revised in this paper has low mesh dependence and can well predict the degree of plastic failure of aluminum alloy plates, which can provide a technical support for the impact strength analysis of aluminum alloy structure.

关键词

铝合金 / 失效准则 / 二次开发 / 冲击强度 / 网格敏感性

Key words

aluminum alloy / failure criterion / secondary development / impact strength / mesh size sensitivity

引用本文

导出引用
陈楚天1,2,刘斌1,张晓丹3,吴卫国1. 一种考虑局部颈缩及损伤演化的改进失效准则在铝合金板冲击有限元分析中的应用[J]. 振动与冲击, 2023, 42(17): 120-127
CHEN Chutian1,2, LIU Bin1, ZHANG Xiaodan3, WU Weiguo1. Application of an improved failure criterion considering local necking and damage evolution in finite element analysis of aluminum alloy plate impact[J]. Journal of Vibration and Shock, 2023, 42(17): 120-127

参考文献

[1] LIU B, DONG A, VILLAVICENCIO R, et al. Experimental and numerical study on the penetration of stiffened aluminum alloy plates punched by a hemi-cylindrical indenter[J]. Ships and Offshore Structures, 2022, 17(3): 492-505.
[2] LIU B, VILLAVICENCIO R, SOARES C G. On the failure criterion of aluminum and steel plates subjected to low-velocity impact by a spherical indenter[J]. International Journal of Mechanical Sciences, 2014, 80: 1-15.
[3] 赵百惠, 胡志强, 陈刚. 一种考虑钢材硬化各向同性的失效准则在船舶碰撞数值仿真中的应用[J]. 振动与冲击, 2018, 37(13): 27-34.
ZHAO Bai-hui, HU Zhi-qiang,CHEN Gang. Application of a bwh-based fracture failure criterion of steel material in numerical simulation of ship collision scenarios[J]. Journal of Vibration and Shock, 2018, 37(13): 27-34.
[4] 刘昆, 严力宇, 傅杰, 等. 强桁材结构在冲压载荷作用下损伤变形的试验与仿真研究[J]. 振动与冲击, 2018, 37(09): 149-154.
LIU Kun, YAN Li-yu, FU Jie, et al. Tests and simulation for damage deformation of web girders subjected to in-plane impact loads[J]. Journal of Vibration and Shock, 2018, 37(09): 149-154.
[5] 刘敬喜, 崔濛, 龚榆峰. 船舶碰撞仿真失效准则比较[J]. 中国舰船研究, 2015, 10(04): 79-85.
LIU Jing-xi,CUI Meng,GONG Yu-feng. A comparative study of failure criteria in ship collision simulations[J]. Chinese Journal of Ship Research, 2015, 10(4): 79-85.
[6] 刘昆, 包杰, 王自力, 等. 船舶-自升式海洋平台碰撞相似率研究[J]. 振动与冲击, 2016, 35(07): 15-22.
LIU Kun, BAO Jie, WANG Zi-li, et al. Scale model tests with a similarity ratio during collision between ship and offshore Jack-up platform[J]. Journal of Vibration and Shock, 2016, 35(07): 15-22.
[7] LIU B, VILLAVICENCIO R, ZHANG S, et al. A simple criterion to evaluate the rupture of materials in ship collision simulations[J]. Marine Structures, 2017, 54: 92-111.
[8] CALLE M, ALVES M. A review-analysis on material failure modeling in ship collision[J]. Ocean Engineering, 2015, 106(1): 20-38.
[9] LIU B, PEDERSEN P T, ZHU L, et al. Review of experiments and calculation procedures for ship collision and grounding damage[J]. Marine Structures, 2018, 59: 105-121.
[10] COPPIETERS S, KUWABARA T. Identification of post - necking hardening phenomena in ductile sheet metal[J]. Experimental Mechanics, 2014, 54(8): 1355-1371.
[11] ARETZ H, KELLER S, VOGT R, et al. Modelling of ductile failure in aluminum sheet forming simulation[J]. International Journal of Material Forming, 2011, 4(2): 163-182.
[12] 周维贤. 金属板料颈缩变形新理论[J]. 西北工业大学学报, 1992, (1): 43-52.
ZHOU Wei-xian. New theory of necking deformation of a sheet metal[J]. Journal of Northwestern Polytechnical University, 1992, (1): 43-52.
[13] DUNAND M, MOHR D. Hybrid experimental - numerical analysis of basic ductile fracture experiments for sheet metals. International Journal of Solids and Structures[J], 2010, 47(9): 1130-1143.
[14] ZHANG Z L, ØDEGÅRD J, SØVIK O P. Determining true stress - strain curve for isotropic and anisotropic materials with rectangular tensile bars: method and verifications[J]. Computational Materials Science, 2001, 20(1): 77-85.
[15] MIKKELSEN L P. Necking in rectangular tensile bars approximated by a 2-D gradient dependent plasticity model[J]. European Journal of Mechanics - A/Solids, 1999, 18(5): 805-818.
[16] LI Y, LUO M, GERLACH J, et al. Prediction of shear-induced fracture in sheet metal forming[J]. Journal of Materials Processing Technology, 2010, 210(14): 1858-1869.
[17] PACK K, MOHR D. Combined necking & fracture model to predict ductile failure with shell finite elements[J]. Engineering Fracture Mechanics, 2017, 182: 32-51.
[18] ALSOS H S, HOPPERSTAD O S, TÖRNQVIST R, et al. Analytical and numerical analysis of sheet metal instability using a stress based criterion[J]. International Journal of Solids and Structures, 2008, 45(7-8): 2042-2055.
[19] HOGSTRÖEM P, RINGSBERG J W, JOHNSON E. An experimental and numerical study of the effects of length scale and strain state on the necking and fracture behaviours in sheet metals[J]. International Journal of Impact Engineering, 2009, 36(10-11): 1194-1203.
[20] DIETER G E. Mechanical behavior under tensile and compressive loads[M]. ASM Handbook 2000; 8: 237-262.
[21] WANG G, ARITA K, LIU D. Behavior of a double hull in a variety of stranding or collision scenarios [J]. Marine Structures, 2000, 13(3): 147-187.
[22] 赵效东. 海洋工程结构物碰撞失效准则研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.
ZHAO Xiao-dong. Research of failure criterion of offshore structural collision[D]. Harbin: Harbin Engineering University, 2010.
[23] 侯利耀. 基于ABAQUS的VUMAT开发及在船舶舷侧结构耐撞性能试验中的应用[D]. 武汉:华中科技大学, 2015.
HOU Li-yao. Development of vumat in abaqus and application of vumat in the experiments of crashworthiness of ship side structure[D]. Wuhan: Huazhong University of Science Technology, 2015.
[24] PESCHMANN J. Energy absorption computations of ship steel structures under collision and grounding (translated from German language)[D]. Hamburg: Technical University of Hamburg, 2001.
[25] ZHANG L, EGGE ED, BRUHNS H. Approval procedure concept for alternative arrangements[C]. In: Proc. 3rd international conference on collision and grounding of ships: Izu, Japan; 2004. pp. 87-96..
[26] STORHEIM M, ALSOS H S, HOPPERSTAD O S, et al. A damage-based failure model for coarsely meshed shell structures[J]. International Journal of Impact Engineering, 2015, 83(sep.): 59-75.
[27] LIU B, VILLAVICENCIO R, SOARES C G . Shear and tensile failure of thin aluminum plates struck by cylindrical and spherical indenters[J]. Ships & Offshore Structures, 2015, 10(1): 45-58.

PDF(3084 KB)

482

Accesses

0

Citation

Detail

段落导航
相关文章

/