液压阻尼型橡胶隔振器动态特性建模方法

刘雪莱1,2,韩愈琪2,江健1,郑雅威1,殷智宏1,上官文斌1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 160-165.

PDF(2533 KB)
PDF(2533 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 160-165.
论文

液压阻尼型橡胶隔振器动态特性建模方法

  • 刘雪莱1,2,韩愈琪2,江健1,郑雅威1,殷智宏1,上官文斌1
作者信息 +

Modeling method for dynamic characteristics of hydraulic damping rubber isolator

  • LIU Xuelai1,2, HAN Yuqi2, JIANG Jian1, ZHENG Yawei1, YIN Zhihong1, SHANGGUAN Wenbin1
Author information +
文章历史 +

摘要

本文从液压阻尼型橡胶隔振器的集总参数模型出发,推导并分析了其统一的复刚度线性模型。基于推导的线性模型,本文同时考虑了液压阻尼型橡胶隔振器惯性通道阻尼的非线性以及上液室刚度的非线性,建立一种新的非线性模型。该模型能反映液压阻尼型橡胶隔振器动态特性的幅值、频率相关性。最后,在简谐激励和随机激励下,利用本文建立的非线性模型分析液压阻尼式橡胶隔振器的动态响应,并和试验结果进行了对比分析。

Abstract

Based on the lumped parameter model of hydraulic damping rubber isolator, a unified linear model of complex stiffness is deduced and analyzed. Based on the derived linear model, a new nonlinear model is established by considering both the nonlinear damping of inertia channel and the nonlinear stiffness of upper chamber of hydraulic damping rubber isolator. The model can reflect the amplitude and frequency dependence of dynamic characteristics of hydraulic damping rubber isolator. Finally, the nonlinear model is used to analyze the dynamic response of hydraulic damping rubber isolator under harmonic excitation and random excitation, and the experimental results are compared and analyzed.

关键词

液压阻尼型橡胶隔振器 / 动态特性 / 频率相关性 / 幅值相关性

Key words

Hydraulic damping rubber isolator / dynamic characteristics / Frequency dependence / Amplitude dependence

引用本文

导出引用
刘雪莱1,2,韩愈琪2,江健1,郑雅威1,殷智宏1,上官文斌1. 液压阻尼型橡胶隔振器动态特性建模方法[J]. 振动与冲击, 2023, 42(17): 160-165
LIU Xuelai1,2, HAN Yuqi2, JIANG Jian1, ZHENG Yawei1, YIN Zhihong1, SHANGGUAN Wenbin1. Modeling method for dynamic characteristics of hydraulic damping rubber isolator[J]. Journal of Vibration and Shock, 2023, 42(17): 160-165

参考文献

[1] Jeong T, Singh R. Inclusion of measured frequency-and amplitude-dependent mount properties in vehicle or machinery models[J]. Journal of Sound and Vibration, 2001, 245(3): 385-415.
[2] Wen-Bin Shangguan and Zhen-Hua Lu. Experimental study and simulation of a hydraulic engine mount with fully coupled fluid structure interaction finite element analysis model, Computers & Structures 2004, 82 (22) 1751-1771
[3] 吕振华,上官文斌,梁伟,等.液阻悬置动态特性实验方法及实测分析[J].中国机械工程, 2004(02): 90-94.
Lu Zhenhua, Shangguan Wen-Bin, Liang Wei, et al. Experimental methods and test evaluation for the dynamic characteristics of hydraulically damped rubber mount [J]. Journal of Mechanical Engineering, 2004(02): 90-94.
[4] Chai T, Dreyer J T, Singh R. Frequency domain properties of hydraulic bushing with long and short passages: system identification using theory and experiment[J]. Mechanical Systems and Signal Processing, 2015, 56: 92-108.
[5] 上官文斌,徐驰.汽车悬架控制臂液压衬套动态特性实测与计算分析[J].振动与冲击,2007(09):7-10+166.
Shangguan W B ,  Chi X U . Experiment and calculation methods for analyzing dynamic performances of hydraulic bushings used in control arms of a suspension [J]. Journal of Vibration and Shock, 2007(09):7-10+166.
[6] 潘孝勇,谢新星,上官文斌.变振幅激励下的液阻橡胶隔振器动态特性分析[J].振动与冲击,2012,31(01):144-149.
Pan X Y ,  Xie X X ,  Shangguan W B . Dynamic properties analysis for a hydraulic rubber isolator under excitations with different amplitudes[J]. Journal of Vibration and Shock, 2012, 31(1):144-149.
[7] Fredette L, Dreyer J T, Rook T E, et al. Harmonic amplitude dependent dynamic stiffness of hydraulic bushings: Alternate nonlinear models and experimental validation[J]. Mechanical Systems and Signal Processing, 2016, 75: 589-606.
[8] Fredette L, Singh R. Effect of fractionally damped compliance elements on amplitude sensitive dynamic stiffness predictions of a hydraulic bushing[J]. Mechanical Systems and Signal Processing, 2018, 112: 129-146.
[9] Lee J H, Singh R. Nonlinear frequency responses of quarter vehicle models with amplitude-sensitive engine mounts[J]. Journal of Sound and Vibration, 2008, 313(3-5): 784-805.
[10] 郑玲, 刘巧斌, 犹佐龙, 等. 半主动悬置幅变动特性建模与试验分析[J]. 机械工程学报, 2017, 53(14): 98-105.
Zheng L, Liu Q, You Z, et al. Development of Modified Lumped Parameter Model involving Amplitude-dependence Characteristics on Semi-active Engine Mount and Experimental Verification[J]. Journal of Mechanical Engineering, 2017, 53(14): 98-105.
[11] Lee J H, Kim K J. Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations[J]. Journal of sound and vibration, 2007, 301(3-5): 909-926.

PDF(2533 KB)

Accesses

Citation

Detail

段落导航
相关文章

/