新型CFCB点阵夹芯结构面外压缩载荷下能量吸收特性研究

赵众豪1,池瑜莉1,2,冯峻良3,文大伟1,朱国华1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 166-174.

PDF(3879 KB)
PDF(3879 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 166-174.
论文

新型CFCB点阵夹芯结构面外压缩载荷下能量吸收特性研究

  • 赵众豪1,池瑜莉1,2,冯峻良3,文大伟1,朱国华1
作者信息 +

Energy absorption characteristics of a novel CFCB lattice sandwich structure under out-of-plane compressive load

  • ZHAO Zhonghao1, CHI Yuli1,2, FENG Junliang3, WEN Dawei1, ZHU Guohua1
Author information +
文章历史 +

摘要

点阵夹芯结构因其优异的力学性能、出色的能量吸收能力、独特的功能性,被广泛应用于航空航天、汽车、船舶等领域。然而,传统点阵夹芯结构在面外压缩载荷下存在应力分布不均匀、节点应力集中等缺点。为了解决上述问题,本研究基于体心立方结构(BCC)提出了一种新型的余弦函数单元基(Cosine function cell-base,CFCB)点阵结构。为了研究CFCB点阵夹芯结构面外压缩载荷下能量吸收特性,制备了CFCB点阵夹芯结构,开展了准静态压溃试验,并与BCC点阵夹芯结构的试验结果进行对比。结果表明,CFCB点阵夹芯结构面外压缩载荷下的承载与能量吸收能力明显优于BCC点阵夹芯结构。随后,基于有限元模型,系统揭示了芯子单胞直径、幅值、周期长度、厚度方向上的单胞层数等胞元参数对CFCB点阵夹芯结构面外压缩载荷下吸能特性的影响。相关研究成果有望为新型CFCB点阵夹芯结构设计提供参考。

Abstract

Lattice sandwich structures are widely used in aerospace, automotive and marine fields because of their excellent mechanical properties, outstanding energy absorption capability and unique functionality. While, traditional lattice materials have problems of uneven stress distribution and joint stress concentration. In order to solve the above problems, a new cosine function cell-base (CFCB) single-cell structure is proposed based on body-centered cubic structure (BCC). To study the energy absorption characteristics of CFCB lattice sandwich structure under out-of-plane compressive load, the CFCB lattice sandwich structure was prepared, and the quasi-static crushing test was carried out, and the test results were compared with those of BCC lattice sandwich structure. The results show that the load-bearing capacity and energy absorption capacity of CFCB lattice sandwich structure under out-of-plane compressive loading are obviously better than that of BCC lattice sandwich structure. Then, based on finite element model, the effects of cell parameters such as cell diameter, amplitude, period length and single cell layer number in the thickness direction of CFCB lattice sandwich structure on capacity absorption performance under out-of-plane compressive loading were simulation analyzed. The related research results are expected to provide a reference for the design of new lattice sandwich structures.

关键词

点阵夹芯结构 / 增材制造 / 能量吸收特性 / 有限元分析

Key words

lattice sandwich structures / additive manufacturing / energy absorption characteristics / FE analysis

引用本文

导出引用
赵众豪1,池瑜莉1,2,冯峻良3,文大伟1,朱国华1. 新型CFCB点阵夹芯结构面外压缩载荷下能量吸收特性研究[J]. 振动与冲击, 2023, 42(17): 166-174
ZHAO Zhonghao1, CHI Yuli1,2, FENG Junliang3, WEN Dawei1, ZHU Guohua1. Energy absorption characteristics of a novel CFCB lattice sandwich structure under out-of-plane compressive load[J]. Journal of Vibration and Shock, 2023, 42(17): 166-174

参考文献

[1] S. Georgiadis, A.J. Gunnion, R.S. Thomson, B.K. Cartwright, Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge, Composite Structures,2008, 86 (1-3):258–268.
[2] G. Di Bella, L. Calabrese, C. Borsellino, Mechanical characterisation of a glass/polyester sandwich structure for marine applications, Materials and Design,2012, 42:486–494.
[3] 陈建恩,施月奇,刘军,等.蒙皮裂纹点阵夹芯梁振动特性分析及裂纹识别[J].振动与冲击,2018,37(5):155-162.
CHEN Jian-en, SHI Yue-qi, LIU Jun, et al. Vibration characteristics analysis and crack identification for a truss core sandwich beam with skin crack, Journal of vibration and shock, 2018, 37(5): 155-162.
[4] Tobias Maconachie, Martin Leary, Bill Lozanovski, et al. SLM lattice structures: Properties, performance, applications and challenges. Materials & Design, 2019, 183: 108137.
[5] 郭怡东,马玉娥,李佩谣.增材制造钛合金微桁架夹芯板低速冲击响应[J].航空学报,2021,42(2):423820.
GUO Yi-dong, MA Yu-er, LI Pei-yao. Low velocity impact response of additively manufactured titanium alloy micro-truss sandwich plate [J]. Aeronautica et astronautica sinica, 2021,42(2): 423820.
[6] Wang B, Wu L Z, Ma L, et al.Low-velocity impact characteristics and residual tensile strength of carbon fiber composite lattice core sandwich structures,Composites Part B: Engineering,2011,42(4): 891-897.
[7] 程树良,吴灵杰,孙帅,等.X型点阵夹芯结构受局部冲击时动态力学性能试验与数值模拟[J].复合材料学报, 2022, 39.
CHENG Shu-liang, WU Ling-jie, SUN Shuai, et al. Experiment and numerical simulation of dynamic mechanical properties of X-lattice sandwich structure under local impact [J]. Acta Materiae Compositae Sinica, 2022, 39.
[8] 冀宾,韩涵,宋林郁,等.面内压缩超轻质点阵夹芯板的优化、试验与仿真[J].复合材料学报,2019,36(4):1045-1051.
JI Bin, HAN Han, SONG Lin-yu, et al. Optimization, experiment and simulation of lightweight lattice design under in-plane compression load[J]. Acta Materiae Compositae Sinica,2019, 36(4):1045-1051.
[9] Zhang Z J, Li B C, Wang Y J, et al. Elevated temperature compression behaviors of 3D printed hollow pyramidal lattice sandwich structure reinforced by truncated square honeycomb, Composite Structures,2022, 286:115307
[10] Liu Y, Zhou C Y, Cen B, et al. Compression property of a novel lattice sandwich structure, Composites Part B: Engineering,2017,117: 130-137.
[11] Wang B, Hu J Q, Li Y Q, et al.Mechanical properties and failure behavior of the sandwich structures with carbon fiber-reinforced X-type lattice truss core, Composite Structures,2018, 185: 619-633.
[12] Zaki Alomar, Franco Concli. Compressive behavior assessment of a newly developed circular cell-based lattice structure. Materials & Design, 2021, 205:109716.
[13] 魏路路. 新型负泊松比结构力学特性及在汽车吸能构件中的应用研究[D].西安:长安大学,2022.
[14] 魏路路,余强,赵轩,等. 内凹-反手性蜂窝结构的面内动态压溃性能研究[J].振动与冲击,2021,40(4):261-269.
WEI Lu-lu, YU Qiang, ZHAO Xuan, et al. In-plane dynamic crushing characteristics of re-entrant anti-trichiral honeycomb[J]. Journal of vibration and shock, 2021, 40(4): 261-269.
[15] Wei L, Zhao X, Yu Q, et al. A novel star auxetic honeycomb with enhanced inplane crushing strength[J]. Thin-Walled Structures, 2020, 149: 106623.
[16] Chen L, Liang S, Liu Y, et al. Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges[J]. Materials Science & Engineering R, 2021, 146:100648.
[17] Cui L,Kiernan S,Gilchrist M D. Designing the energy absorption capacity of functionally graded foam materials. Materials Science & Engineering A,2009,507(1):215-225.
[18] Zhu G, Sun G, Li G, et al. Modeling for CFRP structures subjected to quasi-static crushing[J], Composite Structures, 2018, 184: 41-55.
[19] Meng H, Yan L, et al. Compressive performance and fracture mechanism of bio-inspired heterogeneous glass sponge lattice structures manufactured by selective laser melting. Materials & Design, 2022, 214: 110396.
[20] Lei H, Li C, Meng J, et al. Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ-CT-based finite element analysis. Materials & Design, 2019, 169: 107685.
[21] Zhao Y, Wu Q, Wu L. Quasi-static compressive mechanical properties of multilayer micro-lattice biomaterials for skull repair. Materials & Design, 2022, 220: 110871.
[22] 曹栋. 3D-Kagome复合材料夹芯结构制备及力学性能研究[D].长春:长春工业大学,2021.

PDF(3879 KB)

2627

Accesses

0

Citation

Detail

段落导航
相关文章

/