多频激励作用下悬索时滞减振控制研究

夏慧1,彭剑1,2,李禄欣1,孙洪鑫1,2,禹见达1,2,邵宏利1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 182-187.

PDF(1138 KB)
PDF(1138 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 182-187.
论文

多频激励作用下悬索时滞减振控制研究

  • 夏慧1,彭剑1,2,李禄欣1,孙洪鑫1,2,禹见达1,2,邵宏利1
作者信息 +

Time delay vibration reduction control for suspension cable under multi-frequency excitation

  • XIA Hui1, PENG Jian1,2, LI Luxin1, SUN Hongxin1,2, YU Jianda1,2, SHAO Hongli1
Author information +
文章历史 +

摘要

悬索作为一类典型的柔性结构,因其本身质量轻,柔性大,阻尼小等特点,在多频激励的作用下容易产生大幅振动,易造成结构疲劳破坏,从而导致工程灾害的发生。因此,悬索的振动控制是工程实际应用中亟须解决的问题。该研究采用时滞速度反馈控制策略对多频激励下的悬索进行减振控制。基于Hamilton变分原理,建立多频激励下受控悬索的非线性振动控制模型。利用Galerkin法得到离散后的时滞微分方程,通过多尺度法求解受控悬索发生超谐波与亚谐波联合共振时的幅频响应方程,并判断稳态解的稳定性,分析了受控悬索的非线性动力学行为,以及控制系统参数对共振响应的影响。研究结果表明:多频激励时悬索系统同时出现超谐共振和亚谐共振响应的特性,随着时滞值的增大不同分枝之间距离减小,随着控制增益减小分枝的稳定和不稳定解的相位趋于接近。通过调节控制增益和时滞值的大小可以改变共振范围、响应幅值及其相位,达到最优控制效果。

Abstract

Suspension cable is a typical flexible structure. It has the characteristics of light weight, large flexibility and small damping. Under the action of multi-frequency excitation, it is easy to produce large vibration, which is easy to cause the fatigue failure of structure and the occurrence of engineering disaster. Therefore, the vibration control of suspension cable is an urgent problem to be solved in practical engineering applications. The time-delay velocity feedback control strategy is used to reduce the vibration of the suspension cable under multi-frequency excitation. Based on Hamilton variational principle, a nonlinear vibration control model of a controlled suspension cable under multi-frequency excitation is established. The delay differential equation is obtained by Galerkin method. The multiscale method is used to solve the amplitude-frequency response equations when the superharmonic and subharmonic resonance occurs in the controlled suspension structure, and the stability of the steady-state solution is determined. The nonlinear dynamic behavior of the controlled cable and the influence of the parameters of the control system on the resonance response are analyzed. The results show that the response of superharmonic resonance and subharmonic resonance occurs simultaneously in the multi-frequency excitation system. The distance between different branches decreases with the increase of time delay. As the control gain decreases, the phases of stable and unstable solutions of the branches tend to approach. By adjusting the control gain and time delay, the resonance range, response amplitude and phase can be changed, so as to achieve the optimal control effect.

关键词

时滞反馈 / 共振响应 / 悬索 / 多频激励

Key words

delay feedback / the resonant response / suspension cable / multi-frequency excitation

引用本文

导出引用
夏慧1,彭剑1,2,李禄欣1,孙洪鑫1,2,禹见达1,2,邵宏利1. 多频激励作用下悬索时滞减振控制研究[J]. 振动与冲击, 2023, 42(17): 182-187
XIA Hui1, PENG Jian1,2, LI Luxin1, SUN Hongxin1,2, YU Jianda1,2, SHAO Hongli1. Time delay vibration reduction control for suspension cable under multi-frequency excitation[J]. Journal of Vibration and Shock, 2023, 42(17): 182-187

参考文献

[1] Nayfeh A H, Mook A D . Nonlinear Oscillations[M]. Clarendon, 1979.
[2] 楼京俊,何其伟,朱石坚.多频激励软弹簧型Duffing系统中的混沌[J].应用数学和力学,2004(12):1299-1304.
LOU Jing-jun, HE Qi-wei, ZHU Shi-jian. Chaos in the softening duffing system under multi-frequency periodic forces[J]. Applied mathematics and mechanics,2004(12): 1299-1304.
[3] 李航,申永军,李向红,等.Duffing系统的主-亚谐联合共振[J].力学学报,2020,52(02):514-521.
LI Hang, SHEN Yong-jun, LI Xiang-hong, et al. Primary and subharmonic simultaneous resonance of duffing oscillator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020,52 (02) : 514-521.
[4] Chen J H, Chen W C. Chaotic dynamics of the fractionally damped van der Pol equation[J]. Chaos, Solitons & Fractals, 2008, 35(1): 188-198.
[5] 赵志宏,张明,杨绍普,等.多频激励Duffing-van der Pol系统振动状态研究[J].振动与冲击,2013,32(19):76-79.
ZHAO Zhi-hong, ZHANG Ming, YANG Shao-pu, et al. A Duffing-van der Pol system's vibration behavior under multi-frequency excitation [J]. Journal of Vibration and Shock,2013,32(19):76-79.
[6] 唐建花,李向红,王敏,等.广义分数阶van der Pol-Duffing振子的动力学响应与隔振效果研究[J].振动与冲击,2022, 41(01):10-18.
TANG Jian-hua, LI Xiang-hong, WANG Min, et al. Dynamic response and vibration isolation effect of generalized fractional-order van der Pol-Duffing oscillator[J]. Journal of Vibration and Shock, 2022,41(01): 10-18.
[7] 赵珧冰,林恒辉,黄超辉,等.温度场中悬索受多频激励组合联合共振响应研究[J].振动与冲击,2019, 38(03):207-213.
ZHAO Yao-bing, LIN Heng-hui, HUANG Chao-hui, et al. Combined joint resonance of suspended cable subject to multi-frequency excitation in thermal environment[J]. Journal of Vibration and Shock,2019, 38(03):207-213.
[8] 孙测世,李聪,邓正科,等.分布与端部激励下悬索瞬时相频特性对比[J].振动与冲击,2022,41(24):249-255.
SUN Ce-shi, LI Cong, DENG Zheng-ke, et al. Comparison of instantaneous phase-frequency characteristics of suspended cables under external and end excitation[J]. Journal of Vibration and Shock, 2022,41(24):249-255.
[9] Matsumoto M, Shiraishi N, Shirato H. Rain-wind induced vibration of cables of cable-stayed bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(44): 2011-2022.
[10] 赵跃宇,蒋丽忠,王连华,等.索-梁组合结构的动力学建模理论及其内共振分析[J].土木工程学报,2004 (03):69-72+104.
ZHAO Yue-yu, JIANG Li-zhong, WANG Lian-hua, et al. The dynamical modelling theory and internal resonance of cable-beam composite structure[J]. Journal of Civil Engineering,2004 (03): 69-72+104.
[11] 冯志华,胡海岩.直线运动柔性梁非线性动力学——组合参数共振与内共振联合激励[J].振动工程学报,2004(03):5-9.
FENG Zhi-hua, HU Hai-yan. Nonlinear dynamics of flexible beams undergoing a large linear motion of basement: combinational parametric and internal resonances[J]. Journal of Vibration Engineering,2004(03):5-9.
[12] Pacheco B M, Fujino Y. Keeping cables calm [J]. Civil Engineering Magazine, 1993, 63(10): 56-58.
[13] 陈水生,孙炳楠,胡隽.粘弹性阻尼器对斜拉桥拉索的振动控制研究[J].土木工程学报,2002(06):59-65.
CHEN Shui-sheng, SUN Bing-nan, HU Juan. Cable vibration control research of cable-stayed bridge with viscous damper[J]. Journal of Civil Engineering, 2002(06):59-65.
[14] Peng J, Wang L, Zhao Y, et al. Time-delay dynamics of the MR damper–cable system with one-to-one internal resonances[J]. Nonlinear Dynamics, 2021, 105(2): 1343-1356.
[15] Olgac N, McFarland D M, Holm-Hansen B. Position feedback-induced resonance: The delayed resonator[J]. ASME DYN SYST CONTROL DIV PUBL DSC., ASME, NEW YORK, NY(USA), 1992, 38: 113-119.
[16] Olgac N, Holm-Hansen B T. A novel active vibration absorption technique: delayed resonator[J]. Journal of Sound and Vibration, 1994, 176(1): 93-104.
[17] 赵艳影,徐鉴.时滞非线性动力吸振器的减振机理[J].力学学报,2008(01):98-106.
ZHAO Yan-ying, XU Jian. Mechanism analysis of delayed nonlinear vibration absorber[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008(01):98-106.
[18] 王在华,胡海岩.时滞动力系统的稳定性与分岔:从理论走向应用[J].力学进展,2013,43(01):3-20.
WANG Zai-hua, HU Hai-yan. Stability and bifurcation of delayed dynamic systems: from theory to application[J]. Advances in mechanics,2013,43(01):3-20.
[19] 邵素娟,任传波,荆栋,等.具有时滞反馈控制的非线性主动悬架系统的稳定性、分岔和混沌[J].振动与冲击,2021, 40(07):281-290.
SHAO Su-juan, REN Chuan-bo, JING Dong, et al. Stability, Bifurcation and chaos of nonlinear active suspension system with time delay feedback control[J]. Journal of Vibration and Shock, 2021, 40(07):281-290.
[20] 彭剑,李禄欣,赵珧冰,等.轴向时滞反馈控制下悬索非线性响应分析[J].应用力学学报,2018,35(01):81-85+229.
PENG Jian, LI Lu-xin, ZHAO Yao-bing, et al. Nonlinear responses of suspended cables with a longitudinal time-delay feedback control[J]. Chinese Journal of Applied Mechanics, 2018,35(01):81-85+229.
[21] Irvine H M. Cable Structures [M]. New York: MIT press, 1992.
[22] Arafat H N, Nayfeh A H. Non-linear responses of suspended cables to primary resonance excitations[J]. Journal of Sound and Vibration, 2003, 266(2): 325-354.
[23] Zhao Y, Lin H, Chen L, et al. Simultaneous resonances of suspended cables subjected to primary and super-harmonic excitations in thermal environments[J]. International Journal of Structural Stability and Dynamics, 2019, 19(12): 1950155

PDF(1138 KB)

Accesses

Citation

Detail

段落导航
相关文章

/