摘要
针对滚动轴承早期故障声发射信号受复杂传递路径和噪声的干扰,声发射信号信噪比较低,导致轴承故障特征难以提取的问题,提出了改进小波阈值函数-ACEWT的轴承故障特征提取方法。由于声发射信号呈冲击性与快速衰减的特点,构建一种衰减正弦型与指数型的小波阈值函数对低信噪比的声发射信号进行降噪。研究自相关运算与经验小波变换结合的方法(autocorrelation and empirical wavelet transform,ACEWT),用于滚动轴承故障声发射信号特征提取,解决了在低信噪比下经验小波变换对轴承故障特征提取的不足;引入经验小波能量比-熵指标,选取最优经验小波系数。通过与经验小波变换、改进小波阈值函数-EWT和MCKD-EWT方法进行对比研究,并实验验证。仿真和实验结果表明:所提方法明显优于经验小波变换、改进小波阈值函数-EWT和MCKD-EWT方法,可准确提取轴承故障声发射信号的频率特征。
Abstract
The early fault acoustic emission signal of rolling bearing is affected by complex transmission paths and strong background noise, which makes the fault features difficult to extract. An improved wavelet threshold function -ACEWT (autocorrelation and empirical wavelet transform) method was proposed.Due to the characteristics of impulsiveness and rapid attenuation of acoustic emission signal, an attenuated sinusoidal and exponential wavelet threshold function method was proposed to denoise acoustic emission signal with low signal-to-noise ratio.The method of combining autocorrelation and empirical wavelet transform (ACEWT) was proposed to bearing fault diagnosis. ACEWT method solves the problem that the empirical wavelet transform cannot effectively extract fault features.Introduce the empirical wavelet energy ratio-entropy index to select the optimal empirical wavelet coefficients.The new method can denoise the signal and enhance the periodic elastic impact components feature with low signal-to-noise ratio.The simulated and experimental results show that the proposed method is obviously better than empirical wavelet transform (EWT), improved wavelet threshold function-EWT and Maximum correlated kurtosis deconvolution-empirical wavelet transform (MCKD-EWT).The proposed method can accurately extract the frequency characteristics of fault signal.
关键词
声发射 /
滚动轴承 /
衰减型阈值函数 /
经验小波变换
{{custom_keyword}} /
Key words
acoustic emission /
rolling bearing /
attenuation threshold function /
empirical wavelet transform
{{custom_keyword}} /
于洋1,李赟1,杨平1,杨学广2,梁哲铭3.
改进小波阈值函数和ACEWT方法的滚动轴承故障声发射信号特征提取[J]. 振动与冲击, 2023, 42(17): 194-202
YU Yang1, LI Yun1, YANG Ping1, YANG Xueguang2, LIANG Zheming3.
Improved wavelet threshold function and ACEWT method for feature extraction of acoustic emission signals from rolling bearing faults[J]. Journal of Vibration and Shock, 2023, 42(17): 194-202
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王之海,伍星,柳小勤. 基于位置补偿系数距离估计的滚动轴承特征损伤敏感性评估算法研究[J]. 振动与冲击,2019,38(1):65-72.
WANG Zhihai, WU Xing, LIU Xiaoqin.Damage sensitivity evaluation algorithm for rolling bearing features based on PCCDET[J]. Journal of Vibration and Shock,2019,38(1): 65-72.
[2] 赵怀山,李成,等.基于小波包能量谱与主成分分析的轴承故障特征增强诊断方法[J]. 兵工学报,2019,40(11):2370-2377.
ZHAO Huaishan,LI Cheng,et al.Fault Feature Enhancement Method for Rolling Bearing Fault Diagnosis Based on Wavelet Packet Energy Spectrum and Principal Component Analysis[J].Acta Armamentarii,2019,40(11):2370-2377.
[3] 田晶,艾延廷,赵明,等. 基于峰值保持降采样算法的中介轴承故障声发射数据缩减技术[J]. 推进技术,2018,39(5):1157-1163.
TIAN Jing,AI Yanting,ZHAO Ming,et al. Acoustic Emission Data Reduction Technique of Inter-Shaft Bearing with Fault Based on Peak Hold Down Sample Algorithm[J]. Journal of propulsion technology,2018,39(5):1157-1163.
[4] 郭力,李波,郭君涛.基于小波分析和GA-SVM的金刚石砂轮磨损的声发射监测研究[J].机电工程,2019,36 (12):1255-1260.
GUO Li,LI Bo,GUO Juntao.Diamond wheel wear mon itoring with acoustic emission based on wavelet analysis and GA-SVM[J].Journal of Mechanical&Electrical Engineering, 2019,36(12):1255 -1260.
[5] 康伟,朱永生,闫柯,等.基于CSES和MED的滚动轴承微弱故障特征提取[J].振动.测试与诊断,2021,41(04):660-666.
KANG Wei,ZHU Yongsheng,YAN Ke,et al.Weak Fault Extraction of Rolling Element Bearings Based on CSES and MED[J].Journal of Vibration, Measurement & Diagnosis,2021,41(04):660-666.
[6] 刘忠,张许阳,邹淑云,等.基于改进VMD的离心泵空化声发射信号特征提取[J].排灌机械工程学报,2020,38(12) : 1196-1202.
LIU Zhong,ZHANG Xuyang,ZOU Shuyun,et al.Feature extraction of cavitation acoustic emission signal of centrifu gal pump based on improved variational mode decomposit ion[J].Journal of drainage and irrigation mach inery engine ering( JDIME),2020,38(12) : 1196-1202.
[7] GILLES J.Empirical wavelet transform[J]. IEEE Transactions on Signals Processing,2013,61(16): 3999-4010.
[8] 李志农,刘跃凡,胡志峰,等. 经验小波变换-同步提取及其在滚动轴承故障诊断中的应用[J]. 振动工程学报, 2021,34(6):1284-1292.
LI Zhinong,LIU Yuefan,HU Zhifeng,et al. Empirical wavelet transform-synchroextracting transform and its applications in fault diagnosis of rolling bearing[J].ournal of Vibration Engineering,2021,34(6):1284-1292.
[9] 向玲,李媛媛. 经验小波变换在旋转机械故障诊断中的应用[J]. 动力工程学报,2015,35(12):975-981.
XIANG Ling,LI Yuanyuan.Application of Empirical Wavelet Transform in Fault diagnosis of rotary mechanisms[J].Journal of Chinese Society of Power Engineering,2015,35(12) :975-981.
[10] 陈学军,杨永明. 采用经验小波变换的风力发电机振动信号消噪[J]. 浙江大学学报(工学版),2018,52(05):175-182.
CHEN Xuejun,YANG Yongming. Denoising for vibation signals of wind power generator using empirical wavelet transform[J].Journal of Zhejiang University (Engineering Science),2018,52(05):175-182.
[11] 王晓龙,闫晓丽,何玉灵.变速工况下基于IEWT能量阶次谱的风电机组轴承故障诊断[J]. 太阳能学报,2021,42(05):479-485.
WANG Xiaolong,YAN Xiaoli,HE Yuling.fault diaganosis of wind turbine bearing based on IEWT energy order spectrum under variable speeed condition[J].Acta Energiae Solaris Sinica,2021,42(05):479-485.
[12] 李红延,周云龙,田峰,等. 一种新的小波自适应阈值函数振动信号去噪算法[J]. 仪器仪表学报,2015, 36(10):2200-2206.
LI Hongyan,ZHOU Yunlong,TIAN Feng,et al. Wavelet -based vibration signal de-noising algorithm with a new adaptive threshold function[J].Chinese Journal of Scientific Instrument,2015,36(10):2200-2206.
[13] 周风波,李长庚,朱红求. 基于提升小波变换的阈值改进去噪算法在紫外可见光谱中的研究[J]. 光谱学与光谱分析,2018,38(2):506-509.
ZHOU Fengbo,LI Changgeng,ZHU Hongqiu. Reaearch on Threshold Impoved Denoising Algorithm Based on Lifting Wavelet Transform in UV-Vis spectrum [J]. Spectro scopy and Spectral Analysis,2018,38(2):506-509.
[14] 向北平,周建,倪磊,等. 基于样本熵的改进小波包阈值去噪算法[J]. 振动.测试与诊断,2019,39(02):410-415.
XIANG Beiping,ZHOU Jian,NI Lei,et al. Reaearch on Impoved Wavelet Packet Threshold Denoising Algorithm Based on Sample Entropy[J].Journal of Vibration, Measu rement & Diagnosis,2019,39(02): 410-415.
[15] 杨铮,霍迎科. 基于改进小波算法的轴承信号降噪研究[J]. 中国工程机械学报,2020,18(01):44-48.
YANG Zheng,HUO Yingke. Denoising of roll bearing signal based on improved wavelet algorithm[J].Chinese journal of construction machinery,2020,18(01):44-48.
[16] 李树勋,王志辉,康云星,等. 基于改进小波阈值函数的安全阀排放声信号降噪[J]. 振动与冲击,2021,40 (12):143-150.
LI Shuxun,WANG Zhihui,KANG Yunxing,et al. Noise reduction of a safety valve pressure relief signal based on improved wavelet threshold function[J]. Journal of vibration and shock,2021,40(12):143-150.
[17] SRIVASTAVA M,ANDERSON C L,FREED J H. A new wa velet denoising method for selecting decomposition levels and noise thresholds[J]. IEEE Access,2016(4):3862-3877.
[18] 于洋,杨平,杨理践. 基于小波变换与统计分析的转子碰摩声发射特性研究[J].振动与冲击,2013,32(9):130-134.
YU Yang,YANG Ping,YANG Lijian. Acoustic emission characteristics of rotor rubbing based on wavelet transformand and statistical analysis[J]. Journal of vibration and shock,2013,32(9):130-134.
[19] 陈鹏,赵小强.基于优化VMD与改进阈值降噪的滚动轴承早期故障特征提取[J].振动与冲击,2021,40(13):146-153.
CHEN Peng,ZHAO Xiaoqiang.Early fault feature extraction of rolling bearing based on optimized VMD and improved threshold denoising[J].Journal of Vibration and Shock,2021,40(13):146-153.
[20] 杨铮,霍迎科.基于改进小波算法的轴承信号降噪研究[J].中国工程机械学报,2020,18(01):40-44.
YANG Zheng,HUO Yingke. Denoising of roll bearing signal based on improved wavelet algorithm[J].Chinese Journal of construction machinery,2020,18(01):40-44.
[21] 李政,张炜,明安波,等.基于IEWT和MCKD的滚动轴承故障诊断方法[J].机械工程学报,2019,55(23):136-146.
LI Zheng,ZHANG Wei,MING Anbo,et al.A Novel Fault Diagnosis Method Based on Improved Empirical Wavelet Transform and Maximum Correlated Kurtosis Deconvolution for Rolling Element Bearing[J].Journal of Mechanical Engineering,2019,55(23):136-146.
[22] 刘炜,李思文,王竞,等.基于EWT能量熵的直流短路故障辨识[J].电力自动化设备,2020,40(02):149-154.
LIU Wei,LI Siwen,WANG Jing,et al.Identification of DC short circuit fault based on EWT energy entropy[J]. Electric Power Automation Equipment,2020,40(02): 149 -154.
[23] Cui L,Wu N,Ma C,et al. Quantitative fault analysis of roller bearings based on a novel matching pursuit method with a new step-impulse dictionary[J].Mechanical Systems and Signal Processing,2016,68-69:34-43.
[24] 王普,李天垚,高学金,等.分层自适应小波阈值轴承故障信号降噪方法[J].振动工程学报,2019,32(03):548-556.
WANG Pu,LI Tianyao,GAO Xuejin,et al.Bearing faults signal denoising method of hierarchical adaptive wavelet threshold unction[J].Journal of Vibration Engineering,2019,32(03):548-556.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}