极端波浪作用下跨海箱形桥梁上部结构流固耦合特性研究

黄博1,唐尧1,杨志莹2,祝兵2,屈建强3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 210-219.

PDF(2495 KB)
PDF(2495 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 210-219.
论文

极端波浪作用下跨海箱形桥梁上部结构流固耦合特性研究

  • 黄博1,唐尧1,杨志莹2,祝兵2,屈建强3
作者信息 +

Fluid-structure interaction characteristics of superstructure of a cross-sea box bridge under extreme wave action

  • HUANG Bo1, TANG Yao1, YANG Zhiying2, ZHU Bing2, QU Jianqiang3
Author information +
文章历史 +

摘要

跨海桥梁面临着海洋环境中极端波浪的巨大威胁,波浪-结构的耦合作用特性是跨海箱形桥梁上部结构的极端波浪设计中需考虑的关键问题。文章采用OpenFOAM程序基于有限体积法离散不可压缩流体的Naiver-Stokes方程,并结合SST k-ω湍流模型模拟极端波浪的生成、传播及冲击作用,以弹簧-质量-阻尼系统模拟箱梁上部结构运动体系,并基于动网格方法构建极端波浪与箱梁上部结构相互作用的多相流耦合模型。通过与模型水槽试验结果和已有文献的仿真结果的对比验证该耦合模型的有效性,随后利用该耦合模型探究了波浪参数、结构特性及约束刚度等参数对箱形桥梁上部结构波浪荷载、动力特性及支座力的影响规律。结果表明:结构与流体的耦合效应导致箱形桥梁上部结构所受波浪荷载的波动增大和极值减小,其中水平波浪力最大降低28 %,竖向波浪力最大降低22.5 %,考虑流固耦合能更为合理地反映极端波浪作用下跨海箱形桥梁上部结构的实际波浪荷载;随着结构自振周期的增大,箱形桥梁上部结构所受的水平弹簧约束刚度下降,进而导致箱形桥梁上部结构的水平位移增大;在跨海桥梁上部结构的支座设计中不仅需要考虑上部结构所受波浪荷载,还应考虑结构运动及流固耦合效应对支座力的影响。

Abstract

Coastal bridges face great threats from extreme waves in the ocean environment, and the wave-structure interaction is a key problem need to be solved in the design of the box-girder superstructure when subjected to extreme wave actions. In this paper, the OpenFOAM program and the Finite volume method were used to discretize the Naiver-Stokes equation for modeling incompressible fluid, and combined with the SST k-ω turbulence model to simulate the generation, propagation and impact of extreme waves. In addition, a spring-mass-damping system was used to simulate the motion system of the box-girder superstructure, and a multiphase coupling model between extreme waves and the box-girder superstructure was established based on the dynamic grid method. The effectiveness of the coupling model was verified by comparing with the flume test results of the wave-structure interaction model and the simulation results of existing literatures. Then, the effects of wave parameters, structural characteristics and constraint stiffness on the wave forces, dynamic characteristics and bearing forces of the box-girder superstructure were investigated by using the coupling model. The results show that the coupling effect of the box-girder superstructure and waves causes the wave force to fluctuate and decrease, and the maximum horizontal wave force decreases by 28 % and the maximum vertical wave force decreases by 22.5 %. It is more reasonable to predict wave forces of the box-girder superstructure under extreme wave action through considering the fluid-structure interaction. With the increase of the structural natural vibration period, the constraint stiffness of horizontal spring decreases, which leads to the increase of horizontal displacements of the box-girder superstructure. In the support design of the coastal bridge superstructure, not only the wave force on the superstructure should be considered, but also the influence of the structural motion and the fluid-structure interaction on the bearing force should be considered.

关键词

跨海桥梁 / 极端波浪 / 箱形桥梁上部结构 / 流固耦合 / 数值仿真

Key words

Coastal bridges / Extreme waves / Box-girder superstructure / Fluid-structure interaction / Numerical simulation

引用本文

导出引用
黄博1,唐尧1,杨志莹2,祝兵2,屈建强3. 极端波浪作用下跨海箱形桥梁上部结构流固耦合特性研究[J]. 振动与冲击, 2023, 42(17): 210-219
HUANG Bo1, TANG Yao1, YANG Zhiying2, ZHU Bing2, QU Jianqiang3. Fluid-structure interaction characteristics of superstructure of a cross-sea box bridge under extreme wave action[J]. Journal of Vibration and Shock, 2023, 42(17): 210-219

参考文献

[1] 高宗余, 阮怀圣, 秦顺全, 等. 我国海洋桥梁工程技术发展现状、挑战及对策研究[J]. 中国工程科学, 2019, 21: 1-4.
GAO Zongyu, RUAN Huaisheng, QIN Shunquan, et al. Technical Status, Challenges, and Solutions of Marine Bridge Engineering[J]. Strategic Study of CAE, 2019, 21: 1-4.
[2] 刘振宇, 李乔, 赵灿晖, 等. 深水矩形空心桥墩在地震作用下附加动水压力分析[J]. 振动与冲击, 2008(02): 53-56+175.
LIU Zhenyu, LI Qiao, ZHAO Canhui, et al.  Additional Hydrodynamic Pressure on Rectangular Hollow Piers in Deep Water Due to Earthquake[J]. Journal of Vibration and Shock, 2008(02): 53-56+175.
[3] 谷音, 张晓龙, 郑福鼎, 等. 近海箱型梁桥受海啸波浪力作用试验研究[J]. 振动与冲击, 2022, 41(13): 300-307.
GU Yin, ZHANG Xiaolong, ZHENG Fuding, et al. Tests for Offshore Box Girder Bridge Subjected to Tsunami Wave Force[J]. Journal of Vibration and Shock, 2022, 41(13): 300-307.
[4] 房忱, 李永乐, 秦顺全, 等. 中、美、英规范关于跨海桥梁桩基波浪力的对比[J]. 桥梁建设, 2016, 46(06): 94-99.
FANG Chen, LI Yongle, QIN Shunquan, et al. Comparison of Wave Forces of Pile Foundation for Sea-Crossing Brdiges Provided in Chinese, American and British Codes[J]. Bridge Construction, 2016, 46(06): 94-99.
[5] 赵西增, 童晨奕, 姚炎明. 极端波浪对跨海桥梁上部结构作用研究[J]. 华中科技大学学报(自然科学版), 2020, 48(12): 127-132.
ZHAO Xi-zeng, TONG Chen-yi, YAO Yan-ming. Study on extreme wave impacting on superstructure of coastal bridge[J]. J.Huazhong Univ. of Sci.& Tech. (Natural Science Edition), 2020, 48(12): 127-132.
[6] 郭晨, 崔圣爱, 曾慧姣, 等. 波浪面对车桥气动特性影响下的车桥系统耦合仿真研究[J]. 振动与冲击, 2021, 40(23): 260-268.
GUO Chen, CUI Shengai, ZENG Huijiao, et al. Joint Simulation of Vehicle-Bridge System with Aerodynamic Characteristics Affected by Various Wave Bottom Surfaces [J]. Journal of Vibration and Shock, 2021, 40(23): 260-268.
[7] HUANG B, LIAO L, REN Q, et al. Fragility analysis of the box-girder coastal bridge with different connections subjected to extreme random waves[J]. Ocean Engineering, 2022, 245: 110580.
[8] HUANG B, LUO W, REN Q, et al. Random wave forces on the submerged box-girder superstructure of coastal bridges based on potential flow theory[J]. Ocean Engineering, 2022, 248, 110739
[9] 孟思博, 丁阳. 地震和波浪联合作用下斜拉桥随机动力分析方法[J]. 振动与冲击, 2020, 39(17): 194-202.
MENG Sibo, DING Yang. Stochastic Dynamic Analysis Method for a Cable-Stayed Bridge under Combined Actions of Earthquake and Waves [J]. Journal of Vibration and Shock, 2020, 39(17): 194-202.
[10] 祝兵, 黄博, 康啊真, 等. 跨海桥梁上部结构极端波浪(流)作用2019年度研究进展[J].土木与环境工程学报(中英文), 2020, 42(05): 106-114.
ZHU Bing, HUANG Bo, KANG A-zhen, et al. State-of-the-art review of action of extreme wave (wave-current) on the superstructure of sea-crossing bridge in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(05): 106-114.
[11] DOUGLASS S, CHEN Q, OLSEN J, et al. Wave Forces on Bridge Decks[R]. Final Rep for U.S. Dept of Transportation, Federal Highway Administration, Office of Bridge Technology, U.S. Dept of Transportation, Washington DC, 2006.
[12] CUOMO G, SHIMOSAKO K, TAKAHASHI S. Wave-in-deck loads on coastal bridges and the role of air[J]. Coastal Engineering, 2009, 56(8), 793–809.
[13] AASHTO. Guide specifications for bridges vulnerable to coastal storms[S]. Washington, DC: AASHTO, 2008.
[14] GUO A, FANG Q, BAI X, et al. Hydrodynamic experiment of the wave force acting on the superstructures of coastal bridges[J]. Bridge Engineering, 2015, 20(12): 04015012.
[15] XU G, CAI C, DENG L. Numerical prediction of solitary wave forces on a typical coastal bridge deck with girders[J]. Structure & Infrastructure Engineering, 2017, 13(2): 254–272.
[16] XU G, CAI C, HAN Y. Investigating the characteristics of the solitary wave-induced forces on coastal twin bridge decks[J]. Journal of Performance of Constructed Facilities, 2016, 30(4): 04015076.
[17] QU K, TANG H S, AGRAWAL A, et al. 2017. Hydrodynamic effects of solitary waves impinging on a bridge deck with air vents. J. Bridge Eng. 22 (7): 04017024.
[18] CHEN X, XU W, LIN C, et al. A comparative study on wave-deck interactions of T-type and box girder decks under regular waves[J]. Ocean Engineering, 2021, 231: 109067.
[19] YANG Z, HUANG B, ZHU B, et al. Comparative Study of Tsunami-Like Wave-Induced Forces on Medium-Scale Models of Box Girder and T-Girder Bridges[J]. Journal of Bridge Engineering, 2021, 26(2): 04020125.
[20] HUANG B, DUAN L, YANG Z, et al. Tsunami Forces on a Coastal Bridge Deck with a Box Girder[J]. Journal of Bridge Engineering, 2019, 24(9): 04019091.
[21] ISTRATI D. Large-scale experiments of tsunami inundation of bridges including fluid-structure-interaction[D]. University of Nevada, Reno, 2017.
[22] XU G, CAI C S. Numerical simulations of lateral restraining stiffness effect on bridge deck–wave interaction under solitary waves[J]. Engineering Structures, 2015, 101: 337-351.
[23] CHEN X, XU G, LIN C, et al. A comparative study on lateral displacements of movable T-deck and Box-deck under solitary waves[J]. Structures, 2021, 34: 1614-1635.
[24] HUANG B, YANG Z, ZHU B, et al. Vulnerability assessment of coastal bridge superstructure with box girder under solitary wave forces through experimental study[J]. Ocean Engineering, 2019, 189: 106337.
[25] HUANG B, REN Q, CUI X, et al. Wave characteristics and spectrum for Pingtan Strait Bridge location. Ocean Engineering, 2021, 2019: 108367.
[26] TI Z, WEI K, LI Y, et al. Effect of wave spectral variability on stochastic response of a long-span bridge subjected to random waves during tropical cyclones. J. Bridge Eng., 2020, 25 (1): 04019118.
[27] BRADNER C, SCHUMACHER T, COX D, et al. Experimental setup for a large-scale bridge superstructure model subjected to waves[J]. Journal of waterway, port, coastal, and ocean engineering, 2011, 137(1): 3-11.

PDF(2495 KB)

Accesses

Citation

Detail

段落导航
相关文章

/