混合润滑结合面法向接触刚度模型研究

兰国生,冀成龙,李祥,李声祺,李勇,杨琦

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 220-227.

PDF(2158 KB)
PDF(2158 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 220-227.
论文

混合润滑结合面法向接触刚度模型研究

  • 兰国生,冀成龙,李祥,李声祺,李勇,杨琦
作者信息 +

Normal contact stiffness model of mixed lubrication joint surface

  • LAN Guosheng, JI Chenglong, LI Xiang, LI Shengqi, LI Yong, YANG Qi
Author information +
文章历史 +

摘要

在实际工作中,机械结合面一般加入润滑介质来减少磨损,因此将结合面微凸体等效为圆锥微凸体,并基于分形理论和改进的W-M函数建立混合润滑状态下结合面法向接触刚度三维分形模型。对模型进行模拟仿真,仿真结果表明:结合面无量纲法向接触总刚度随着分形维数的增大呈现出先增大后减小的趋势,且在分形维数为2.6附近时取得最大值;随着分形粗糙度参数的增大而减小;随着润滑介质的声阻抗增大而增大;混合润滑状态下结合面无量纲法向接触总刚度大于无润滑介质结合面无量纲法向接触刚度;最后与其他模型和实验数据进行对比,本文模型与实验数据更契合,验证了模型的正确性。混合润滑粗糙表面法向接触刚度模型的提出,为结合面的刚度预测和机械设备的性能优化以及结构改进提供良好的依据。

Abstract

In order to reduce wear, lubrication medium will be added to the mechanical joint surface in the actual work. Therefore, the deformed part for asperity of joint surface is equivalent to the conical asperity, and the three-dimensional fractal model for normal contact stiffness of mixed lubrication joint surface is established based on the fractal theory and improved W-M function. Simulation is carried out for the model. According to the simulation results,  the dimensionless total normal contact stiffness on mixed lubrication joint surface increases firstly and then decreases with the increase in fractal dimension,  and reaches the maximum when the fractal dimension is about 2.6; the dimensionless total normal contact stiffness decreases with increase in fractal roughness parameter, and increases with increase in acoustic impedance of lubricating medium; The dimensionless total normal contact stiffness of mixed lubrication joint surface is greater than that of the joint surface without lubrication medium; Finally, compared with other models and the experimental data, the model is more consistent with the experimental data, which also verifies the correctness. The three-dimensional fractal model of normal contact characteristics of mixed lubrication rough surface provides a good basis for the stiffness prediction of joint surface, the performance optimization and structural improvement of mechanical equipment.

引用本文

导出引用
兰国生,冀成龙,李祥,李声祺,李勇,杨琦. 混合润滑结合面法向接触刚度模型研究[J]. 振动与冲击, 2023, 42(17): 220-227
LAN Guosheng, JI Chenglong, LI Xiang, LI Shengqi, LI Yong, YANG Qi. Normal contact stiffness model of mixed lubrication joint surface[J]. Journal of Vibration and Shock, 2023, 42(17): 220-227

参考文献

[1] M. Burdekin, N. Back, A. Cowley. Analysis of the Local Deformation in Machine Joints [J]. Archive Journal of Mech. Eng. Sci,1959 -1982(1 -23),21(1):25 -32.
[2] 杨红平,傅卫平,王雯等.基于分形几何与接触力学理论的结合面法向接触刚度计算模型[J].机械工程学报,2013,49(01):102-107.
Yang Hngping, Fu Weiping, Wang Wen et.al. Calculation Model of the Normal Contact Stiffness of Joints Based on the Fractal Geometry and Contact Theory[J]. JOURNAL OF MECHANICAL ENGINEERING, 2013,49(1):102-107.
[3] 田红亮,钟先友,秦红玲等.依据各向异性分形几何理论的固定结合部法向接触力学模型[J].机械工程学报,2013,49(21):108-122.
Tian Hongliang, Zhong Xianyou, Qin Hongling et.al. Normal Contact Mechanics Model of Fixed Joint Interface Adopting Anisotropic Fractal Geometrical Theory[J]. JOURNAL OF MECHANICAL ENGINEERING, 2013, 49(21):108-122
[4] 李小彭,孙德华,梁友鉴等.弹塑形变的结合面法向刚度分形模型及仿真[J].机械工程学报,2015,13(03):189-196.
Li Xiaopeng, Sun Dehua, Liang Youjian et.al. Fractal modeling and simulation on normal stiffness for elastic-plastic deformation joint surface[J]. Chinese Journal of Construction Machinery, 2015, 49(21):189-196.
[5] 张伟,张学良,温淑花等.考虑微凸体基体变形和相互作用的结合面法向接触刚度模型[J].西安交通大学学报,2020,54(06):115-121.
Zhang Wei, Zhang Xueliang, Wen Shuhua et al. A normal contact stiffness model of joint surface considering interaction of deformation of substrate and asperity[J]. Journal of Xi’an Jiaotong University, 2020, 54(06):115-121.
 [6] 谭文兵,兰国生,张学良等.依据各向异性分形理论的固定结合面椭圆弹塑性法向接触刚度建模及仿真分析[J].固体力学学报,2021,42(01):63-76.
Tan Wenbing, Lan Guosheng, Zhang Xuelinag et al. Modeling and simulation analysis of elliptic-plastic normal contact stiffness of joint surface based on anisotropic fractal theory[J]. Chinese Journal of Solid Mechanics. 2021, 42(01):63-76.
[7] 兰国生,孙万,谭文兵等.基于圆锥微凸体的结合面法向刚度分形模型研究[J].振动与冲击,2021,40(15):207-215.
Lan Guosheng, Sun Wan, Tan Wenbing et al. cone elastoplastic fractal model of two contact rough surfaces[J]. Journal of Vibration and Shock, 2021,40(15):207-215.
[8] GONZALEZ-VALADEZ M,DWYER-JOYCE R S, LEWIS R. Ultrasonic reflection from mixed liquid-solid contacts and The determination of interface stiffness [J] Tribology and Interface Engineering Series,2005,48: 313-320.
[9] Sun Yunyun et al. Study on the normal contact stiffness of the fractal rough surface in mixed lubrication[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232(12) : 1604-1617
[10] 肖会芳,孙韵韵,徐金梧等.混合润滑状态下粗糙界面法向接触刚度计算模型与特性研究[J].振动与冲击,2018,37(24):106-114+147.
Xiao Huifag, Sun Yunyun, Xu Jinwu et al. A calculation model for the normal contact stiffness of rough surface in mixed lubrication[J]. Journal of Vibration and Shock, 2018, 37(24):106-114+147.
[11] 李玲,裴喜永,史小辉等.混合润滑状态下结合面的法向接触刚度研究[J].振动与冲击,2020,39(03):16-23.
Li Ling, Pei Yongxi, Shi Xioahui et al. Normal contact stiffness of machine joint surfaces under mixed lubrication state[J]. Journal of Vibration and Shock, 2020, 39(03):16-23.
[12] JOHNSON K L,GREENWOOD J A,POON S Y.A simple theory of asperity contact in elastohydro-dynamic lubrication[J].Wear,1972,19:91-108.
[13] 丁雪兴,严如奇,贾永磊.基于基底长度的粗糙表面分形接触模型的构建与分析[J].摩擦学学报,2014,34(04):341-347.
Ding Xuexing, Yan Ruqi, Jia Yonglei. Construction and analysis of fractal contact mechanics Model for rough surface based on base length[J]. Tribology, 2014, 34(04):341-347.
[14] 刘佐民.摩擦学理论与设计[M].武汉:武汉理工大学出
版社,2009.
[15] YAN W,KOMVOPOULOS K.Contact analysis of elastic-plastic fractal surfaces [J]. Journal of Appljed Physics,1998,84(7):3617—3624.
[16] JOURANI A.A new three—dimensional numerical model of rough contact:influence of mode of surface deformation on real area of contact and Pressure distribution [J].ASME Journal of Tribology,2015,137(1),011401-1-011401-11.
[17] 陈虹旭,董冠华,殷勤等.基于分形理论的结合面法向接触刚度模型[J].振动与冲击,2019,38(08):218-224.
Chen Hongxu, Dong Guanhua, Yin Qin et al. A normal contact stiffness model of joint surface based on the fractal theory[J]. Journal of Vibration and Shock, 2019, 38(08):218-224.
[18] KRAUTKRAMER J, KRAUTKRAMER H. Ultrasonic testing of materials [M].New York: Springer Science and Business Media,2013.
[19] 温晓宇,张学良,谭文兵等.混合润滑结合面法向接触刚度三维分形模型研究[J].组合机床与自动化加工技术,2020(11):49-53.
Wen Xiaoyu, Zhang Xualiang, Tan Wenbing et al. Study on the normal contact stiffness of the 3D fractal rough surface in mixed lubrication[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(11):49-53.
[20] TATTERSALL H G.The ultrasonic pulse-echo technique as applied to adhesion testing [J].Journal of Physics D: Applied Physics,1973,6( 7) : 819-832.
[21] 张学良,陈永会,温淑花等. 考虑弹塑性变形机制的结合面法向接触刚度建模[J].振动工程学报, 2015, 28(1): 91-99.
ZHANG Xueliang, CHEN Yonghui, WEN Shuhua. et al. The model of normal contact stiffness of joint interfaces incorporating elastoplastic deformation mechanism [J]. Journal of Vibration Engineering, 2015, 28(1):91-99.
[22] WANG Runqiong, ZHU Lida, ZHU Chunxia. Research on fractal model of normal contact stiffness for mechanical joint considering asperity interaction[J].  International Journal of Mechanical Sciences. 2017, 134: 357-369.

PDF(2158 KB)

322

Accesses

0

Citation

Detail

段落导航
相关文章

/