一种应用于射流破岩的孔隙形状近似法

马小晶,周新超,肖新朋,程璨

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 245-252.

PDF(3717 KB)
PDF(3717 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 245-252.
论文

一种应用于射流破岩的孔隙形状近似法

  • 马小晶,周新超,肖新朋,程璨
作者信息 +

A pore shape approximation method applied in jet breaking rock

  • MA Xiaojing, ZHOU Xinchao, XIAO Xinpeng, CHENG Can
Author information +
文章历史 +

摘要

为了精准模拟油气资源开采领域中射流破碎孔隙岩体的动态过程,构建准确且有效的孔隙岩体是十分关键的。基于光滑粒子流体动力学(Smoothed Particle Hydrodynamics, SPH)方法,提出了一种孔隙形状近似法(Pore Shape Approximation, PSA)。通过模拟孔隙岩体的单轴压缩试验,验证了PSA方法所构建的孔隙岩体模型与实验结果具有较好的相似性,通过引入描述水射流和岩体力学特性的本构方程,建立了射流冲击孔隙岩体的数值模型,并与数字岩心技术进行了对比,该模型具有较好的计算效率和稳定性。随后,分析了孔隙形状、尺寸和不同形状孔隙占比对岩体破损的影响。研究表明,不同形状的孔隙均存在一个使岩体破损效果最佳的尺寸;含薄片体、正三棱柱或正三角锥的孔隙岩体更容易破损,这三种孔隙的占比越高,岩体破损效果越明显。

Abstract

In order to accurately simulate the dynamic process of jet fracturing of porous rock in the field of oil and gas resource exploitation, it is crucial to build an accurate and effective porous rock .Based on the Smoothed Particle Hydrodynamics (SPH) method, a pore shape approximation (PSA) method for constructing porous rock is proposed. Through the uniaxial compression test of simulated porous rock , it is verified that the porous rock model constructed by PSA method has good similarity with the experimental results, and the constitutive equation describing the mechanical properties of water jet and rock is introduced. The numerical model of jet impacting on porous rock is established and compared with the digital core technology. The results show that the model has good computational efficiency and stability.The influence of pore shape, pore size and pore ratio of different shapes on rock damage is analyzed.The simulation results show that there is a size for the best damage effect of rock with different shapes of pores; Porous rock containing thin slices, regular triangular prism or regular triangular cone is more likely to be damaged. The higher the proportion of these three kinds of pores, the more obvious the damage effect of rock.

关键词

孔隙形状近似 / SPH方法 / 孔隙尺寸 / 孔隙结构 / 射流破岩

Key words

Pore shape approximation / SPH method / Pore size / Pore structure / Jet rock breaking

引用本文

导出引用
马小晶,周新超,肖新朋,程璨. 一种应用于射流破岩的孔隙形状近似法[J]. 振动与冲击, 2023, 42(17): 245-252
MA Xiaojing, ZHOU Xinchao, XIAO Xinpeng, CHENG Can. A pore shape approximation method applied in jet breaking rock[J]. Journal of Vibration and Shock, 2023, 42(17): 245-252

参考文献

[1] 贾承造. 中国石油工业上游发展面临的挑战与未来科技攻关方向[J]. 石油学报, 2020, 41(12): 1445-1464.
JIA Cheng-zao. Development challenges and future scientific and technological researches in China’s petroleum industry upstream[J]. Acta Petrolei Sinica, 2020, 41(12): 1445-1464.
[2] 李  滔,李  闽,荆雪琪,等. 孔隙尺度各向异性与孔隙分布非均质性对多孔介质渗透率的影响机理[J]. 石油勘探与开发, 2019, 46(03): 569-579.
LI Tao, LI Min, JING Xue-qi, et al. Influence mechanism of pore-scale anisotropy and pore distribution heterogeneity on permeability of porous media[J]. Petroleum Exploration and Development, 2019, 46(03): 569-579.
[3] 刘曰武,高大鹏,李 奇,等. 页岩气开采中的若干力学前沿问题[J]. 力学进展, 2019, 49(00): 1-236.
LIU Yue-wu, GAO Da-peng, LI Qi, et al. Mechanical frontiers in shale-gas development[J]. Advances in Mechanics, 2019, 49(00): 1-236.
[4] 光新军,王敏生,皮光林. 超高压水射流钻井技术现状及发展建议[J]. 钻采工艺, 2017, 40(01): 37-40+7.
CUANG Xin-jun, WANG Min-sheng, Pi Guang-lin. Status and development suggestion for High-Pressure water jet drilling[J]. Drilling&Production Technology, 2017, 40(01): 37-40+7.
[5] 程晓泽,任福深,方天成,等. 粒子射流耦合冲击破岩实验[J]. 石油学报, 2018, 39(2): 232-239.
CHENG Xiao-ze, REN Fu-shen, Fang Tian-cheng, et al. Mathematical modeling and experimental analysis of coupled particle and jet flow rock breaking[J]. Engineering Mechanics. 2018, 39(2): 232-239.
[6] 隋微波,权子涵,侯亚南,等. 利用数字岩心抽象孔隙模型计算孔隙体积压缩系数[J]. 石油勘探与开发, 2020, 47(03): 564-572.
SUI Wei-bo, QUAN Zi-han, HOU Ya-nan, et al. Estimating pore volume compressibility by spheroidal pore modeling of digital rocks[J]. Petroleum Exploration and Development, 2020, 47(03): 564-572.
[7] 蔡少斌,杨永飞,刘  杰.考虑热流固耦合作用的多孔介质孔隙尺度两相流动模拟[J]. 力学学报, 2021.
CAI Shao-bin, YANG Yong-fei, LIU Jie. Pore-scale simulation of multiphase flow considering thermohydro-mechanical coupling effect in porous media[J]. Chinese Journal of Theoirtical and Applied Mechanics, 2021.
[8] 李俊键,刘  洋,高亚军,等. 微观孔喉结构非均质性对剩余油分布形态的影响[J]. 石油勘探与开发, 2018, 45(06): 1043-1052.
LI Jun-jian, LIU Yang, GAO Yajun, et al. Effects of microscopic pore structure heterogeneity on the distribution and morphology of remaining oil[J]. Petroleum Exploration and Development, 2018, 45(06): 1043-1052..
[9] 李  博,韩同城,符力耘. 基于数字岩心的含裂隙储层砂岩介电性质研究[J]. 地球物理学报, 2020, 63(12): 4578-4591.
LI Bo, HAN Tongcheng, FU Li-yun. Dielectric porperties of fractured reservoir sandstones based on digital rock physics technique[J]. Chinese journal of geophysics. 2020, 63(12): 4578-4591.
[10] 印兴耀,郑  颖,宗兆云,等. 数字岩心逆建模理论下的储层参数定量预测方法[J]. 地球物理学报, 2019, 62(02): 720-729.
YIN Xing-yao, ZHENG Ying, ZONG Zhao-yun, et al. Estimation of reservoir properties with inverse digital rock physics modeling approach[J]. Chinese Journal of Geophysics, 2019, 62(02): 720-729.
[11] LIU M B, LIU G R. Smoothed particle hydrodynamics (sph): an overview and recent developments[J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76.
[12] SILIN D, PATZEK T. Pore space morphology analysis using maximal inscribed spheres [J]. Physica A Statistical Mechanics & Its Applications, 2006, 371(2): 336-360.
[13] SADOWSKY M, STERNBERG E, CHICAGO H. Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of cavity[J]. Journal of Applied Mechanics, 1947, 14(3): 191-201.
[14] SADOWSKY M, STERNBERG E. Stress concentration around a triaxial ellipsoidal cavity[J]. Journal of Applied Mechanics, 1949, 16(2): 149-157
[15] RAO D Y, BAI B. Study of the factors influencing diffusive tortuosity based on pore scale SPH simulation of granular soil[J]. Transport in Porous Media, 2020, 132: 333-353.
[16] 王金波. 岩石孔隙结构三维重构及微细观渗流的数值模拟研究[D]. 中国矿业大学(北京), 2014.
WANG Jin-bo. 3D reconstruction of porous rock and numerical simulation of fluid flow at mesoscale levels[D]. China University of Mining & Technology (Beijing), 2014.
[17] 宋勇军,杨慧敏,谭  皓,等. 冻融环境下不同饱和度砂岩损伤演化特征研究[J]. 岩石力学与工程学报, 2021, 40(08): 1513-1524.
SONG Yong-jun, YANG Hui-min, TAN Hao, et al. Study on damage evolution characteristics of sandstone with different saturations in freeze-thaw environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(08): 1513-1524.
[18] HEUZE O. General form of the Mie-Grüneisen equation of state [J]. Comptes Rendus Mecanique, 2012, 340: 679-687.
[19] 赵  健,张贵才,徐依吉,等. 基于SPH方法粒子射流破岩数值模拟与实验研究[J]. 爆炸与冲击, 2017, 37(3): 479-486.
ZHAO Jian, ZHANG Gui-cai, XU Yi-ji, et al. SPH-based numerical simulation and experimental study on rock breaking by particle impact[J]. Explosion and shock waves, 2017, 37(3): 479-486.
[20] 刘  勇,李志飞,魏建平,等. 磨料空气射流破煤冲蚀模型研究[J]. 煤炭学报, 2020, 45(05): 1733-1742.
LIU Yong, LI Zhi-fei, WEI Jian-ping, et al. Erosion model of abrasive air jet used in coal breaking[J], Journal of China Coal Society, 2020, 45(05): 1733-1742.
[21] IQBAL M A, KUMAR V, MITTAL A K. Experimental and numerical studies on the drop impact resistance of prestressed concrete plates[J]. International Journal of Impact Engineering, 2019, 123: 98-117.
[22] Xue Y, Si H, Yang Z, et al. Microscopic damage field in coal induced by water jets[J]. Journal of Loss Prevention in the Process Industries, 2018, 56: 300-315

PDF(3717 KB)

Accesses

Citation

Detail

段落导航
相关文章

/