新型弹性侧支撑长轨枕式减振轨道结构力学特性研究

曹子勇,和振兴,苏程,包能能,王玉魁,贠剑峰

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 25-34.

PDF(3963 KB)
PDF(3963 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 25-34.
论文

新型弹性侧支撑长轨枕式减振轨道结构力学特性研究

  • 曹子勇,和振兴,苏程,包能能,王玉魁,贠剑峰
作者信息 +

Mechanical characteristics of new type long sleeper damping track structure with elastic lateral support

  • CAO Ziyong, HE Zhenxing, SU Cheng, BAO Nengneng, WANG Yukui, YUN Jianfeng
Author information +
文章历史 +

摘要

新型弹性侧支撑长轨枕式减振轨道和既有轨枕式减振轨道的弹性支撑方式不同,重点对新型弹性侧支撑长轨枕式减振轨道力学特性和关键参数展开研究。首先,在轮载作用条件下,对比分析两种减振轨道的应力分布情况,找出道床的应力集中区域及最不利位置,研究载荷施加在新型弹性侧支撑长轨枕式减振轨道不同位置时部件的应力分布特征,并对道床的减振特性加以研究。其次,针对荷载作用于轨枕正上方时的最不利位置,进行道床承轨槽折角处的应力分布分析,以及减振轨道整体道床的配筋设计与检算。最后,采用试验与仿真相结合的方发,研究了侧支撑式弹性垫板的厚度、空间倾斜量和材料硬度对轨枕节点动刚度和垂向最大位移的影响。研究结果表明,新型弹性侧支撑长轨枕式减振轨道道床的最大应力出现在承轨槽两侧下部靠近折角的区域,与既有轨枕式减振轨道的最大应力出现在承轨槽底部中间区域截然不同,且减振效果较显著。道床结构参考既有纵向承轨台整体式道床的配筋方案可以满足受力要求,承轨槽两侧下端折角处不会开裂。侧支撑式弹性垫板的厚度、空间倾斜量和材料硬度是影响新型弹性侧支撑长轨枕式减振轨道节点动刚度的三个关键,其中厚度和材料硬度的变化对节点动刚度的影响较大,增加侧垫厚度,降低材料硬度使节点动刚度降低,载荷-位移滞回曲线的面积增大,消耗的振动能量更多;空间倾斜量的影响较小,与节点刚度之间存在正比例变化关系;在三个关键参数的研究范围内取值可以获得满足规范要求,并具有不同减振等级的节点动刚度。

Abstract

There are obvious differences between the elastic pad support method of the new elastic side-supported long sleeper type damping track (ESSLSDT) and the existing sleeper type damping track. And the mechanical characteristics and key parameters of the ESSLSDT are investigated in detail in this work. Firstly, to identify the stress concentration area and the most unfavorable location in the track bed, the stress contours of the two types of damping tracks are compared under moving wheel load, the stress distribution characteristics of the components of the ESSLSDT are investigated when the load is applied on the different positions of ESSLSDT, and the damping characteristics of track bed are studied. Then, the stress distribution at the corner of the sleeper groove and the design and check calculation of the overall track bed reinforcement are analyzed for the most unfavorable position when the load acts on the long sleeper. Finally, the influence of thickness, spatial inclination and material hardness of the side-supported elastic pad on the dynamic stiffness and vertical maximum displacement of the long sleeper is studied by using the combination of experimental and simulation methods. The results show that the maximum stress of the track bed of the ESSLSDT is located near the corner of the bottom of the sleeper groove, which is quite different from that of the existing sleeper type damping track in the middle of the bottom of the bearing rail groove and has better damping effect. The reinforcement scheme of the track bed refers to the existing longitudinal rail bearing platform monolithic track bed, which can meet the engineering design requirements and make sure that the lower corner of the two sides of the sleeper groove will not cause crack. The thickness, spatial inclination and material hardness of the side-supported elastic pad are three key factors affecting the dynamic stiffness of the ESSLSDT, in which the thickness and material hardness of the side-supported elastic pad have a significant effect on the dynamic stiffness the ESSLSDT, while the effect of the spatial inclination is smaller. As the thickness of the side-supported elastic pad increases, the hardness of the side-supported elastic pad material decreases and the spatial inclination increases, the dynamic stiffness of the ESSLSDT decreases, the area of the hysteresis curve increases and the hysteresis energy consumption increases.Therefore, the dynamic stiffness of the ESSLSDT with different damping levels can be obtained by taking values of the three key parameters to meet the relevant specification requirements.

关键词

减振轨道 / 减振效果 / 配筋 / 侧支撑式弹性垫板 / 节点动刚度

Key words

damping track / damping effect ;reinforcement / side-supported elastic pad / joint dynamic stiffness

引用本文

导出引用
曹子勇,和振兴,苏程,包能能,王玉魁,贠剑峰. 新型弹性侧支撑长轨枕式减振轨道结构力学特性研究[J]. 振动与冲击, 2023, 42(17): 25-34
CAO Ziyong, HE Zhenxing, SU Cheng, BAO Nengneng, WANG Yukui, YUN Jianfeng. Mechanical characteristics of new type long sleeper damping track structure with elastic lateral support[J]. Journal of Vibration and Shock, 2023, 42(17): 25-34

参考文献

[1]  Licitra G, Fredianelli L, Petri D, et al. Annoyance evaluation due to overall railway noise and vibration in Pisa urban areas[J]. Sci Total Environ,2016,568(15):1315-1325.
[2]  Connolly DP, Marecki GP, Kouroussis G, et al. The growth of railway ground vibration problems - A review[J]. Sci Total Environ,2016,568(15):1276-1282.
[3]  曾志平,胡广辉,王卫东,等. 弹性支撑块式无砟轨道力学特性研究[J]. 铁道工程学报,2021, 38(01):25-31.   Zeng Zhiping, Hu Guanghui, Wang Weidong, et al. Research on Mechanical Properties of Elastic Braced Block Ballastless track [J]. Journal of Railway Engineering, 2021, 38(01): 25-31.
[4]  姜  浩,赵坪锐,刘观. 减振型无砟轨道轨枕结构对比分析[J]. 铁道标准设计,2014, 58(10):51-55.   Jiang Hao, Zhao Pingrui, Liu Guan. Comparative Analysis of vibration Absorbing Ballastless track sleeper Structure [J]. Railway standard design, 2014, 58(10): 51-55.
[5]  赵信洋. 弹性长枕式无砟轨道枕长与支撑长度比例分析[J]. 路基工程,2010, 28(04):202-204. Zhao Xinyang. Analysis of proportion between Pillow Length and Support Length of Elastic Long-sleeper Ballastless Track [J]. Roadbed Engineering, 2010, 28(04): 202-204.
[6]  He Zhenxing, Zhai Wanming, Wang Yukui, et al. Theoretical and experimental study on vibration reduction and frequency tuning of a new damped-sleeper track[J]. Construction and Building Materials,2022,20(336):127-420.
[7]  江小州,齐欢欢,冯志鹏,等. 地铁梯形轨枕轨道的振动特性分析[J]. 机械工程师,2019, 52(05):95-97. Jiang Xiaozhou, QI Huanhuan, Feng Zhipeng, et al. Vibration Characteristics Analysis of Trapezoidal sleeper track in Subway [J]. Mechanical Engineer, 2019, 52(05): 95-97.
[8]  辛  涛,张  琦,高  亮,等. 高速铁路CRTS Ⅲ型板式无砟轨道减振垫层动力影响及结构优化[J].中国铁道科学,2016, 37(05):1-7.  Xin Tao, Zhang Qi, Gao Liang, et al. Dynamic Influence and Structure Optimization of Vibration Absorption Cushion of CRTS ⅲ Plate-type Ballastless track in High-speed Railway [J]. China Railway Science, 2016, 37(05): 1-7.
[9]  于  鹏. 城市轨道交通连块式轨枕整体道床配筋设计[J]. 城市轨道交通研究,2019, 22(05):171-174. Yu peng. Reinforcement Design of Integral Track Bed with Block Sleeper in Urban rail Transit [J]. Research on Urban rail Transit, 2019, 22(05): 171-174.
[10]  黄河山,管吉波,刘玉祥,等. 城市轨道交通中钢筋桁架轨枕式整体道床配筋设计[J]. 铁道建筑,2015, 53(09):111-113. Huang Heshan, Guan Jibo, Liu Yuxiang, et al. Reinforcement Design of Steel Truss Sleeper Type Integral Track Bed in Urban Rail Transit [J]. Railway Construction, 2015, 53(09): 111-113.
[11]  梁  爽,杨荣山,张光明,等. 基于等寿命设计理念的CRTS Ⅲ型板式无砟轨道配筋优化[J]. 铁道标准设计,2020, 64(09):10-14.  Liang Shuang, Yang Rongshan, Zhang Guangming, et al. Reinforcement Optimization of CRTS ⅲ Plate-type Ballastless Track Based on Equal Life Design Concept [J]. Railway standard design, 2020, 64(09): 10-14.
[12]  翟志浩,和振兴. 极寒环境下铁路扣件新型网孔式弹性垫板动力性能及影响研究[J]. 中国科学:技术科学,2020, 50(02):235-244.  Zhai Zhihao, He Zhenxing. Research on Dynamic Performance and Influence of New Mesh Type Elastic Pad for Railway Fasteners under Extreme Cold Environment [J]. Science in China: Technical Sciences, 2020, 50(02): 235-244.
[13]  Oregui M, Man AD, Woldekidan MF, et al. Obtaining railpad properties via dynamic mechanical analysis[J]. Journal of Sound and Vibration,2016,17(363):460-472.
[14]  金建敏,肖  骥,刘彦辉,等. 不同剪切变形下橡胶隔震支座竖向压缩刚度试验研究[J]. 振动与冲击,2021, 40(06):93-99.  Jin Jianmin, Xiao Ji, Liu Yanhui, et al. Experimental study on vertical compression stiffness of rubber isolation Bearings under Different shear deformation [J]. Journal of Vibration and Shock. 2021, 40(06): 93-99.
[15]  Koh C G, Kelly J M. A simple mechanical model for elastomeric bearings used in base isolation[J]. International Journal of Mechanical Sciences,1988,30(12):933−943.
[16]  Haringx J A. On highly compressive helical springs and rubber rods and their applications to free mountings—Parts I, II and III[J]. Philips Research Reports,1948:401−449.
[17]  Ryan K L, Kelly J M, Chopra A K. Nonlinear model for lead-rubber bearings including axial-load effects[J]. Journal of engineering mechanics, 2005,131(12):1270−1278.
[18]  Ishii K, Kikuchi M. Improved numerical analysis for ultimate behavior of elastomeric seismic isolation bearings[J]. Earthquake Engineering & Structural Dynamics,2019,48(1): 65−77.
[19]  王斌仓,石广田,和振兴,等. 填充高阻尼材料增强网孔式橡胶弹性垫板的性能[J]. 铁道建筑,2019,59(09):136-141.   Wang Bincang, Shi Guangtian, He Zhenxing, et al. Performance of mesh-type rubber elastic Plate Reinforced by Filling high damping Material [J]. Railway Construction, 2019, 59(09): 136-141.
[20]  赵  峰,和振兴,石广田,等. 网孔式弹性垫板动静刚度特性研究[J]. 机械强度,2020, 42(05):1243-1249.Zhao Feng, He Zhenxing, Shi Guangtian, et al. Research on dynamic and static Stiffness characteristics of Mesh Elastic Pad [J]. Mechanical Strength, 2020, 42(05): 1243-1249.
[21]  和振兴. 一种轨枕式减振结构、无砟轨道及维修方法[P]. CN106758554BU, 2019-09-24.   He Zhenxing . A Sleeper Type Vibration Damping Structure, Ballastless Track and Maintenance Method [P]. CN106758554BU, 2019-09-24.
[22]  Q/CR9130—2018. 铁路轨道设计规范(极限状态法)[S]. 北京:中国铁道出版社,2018. Q/CR9130 — 2018. Code for Railway Track Design (Limit State Method)[S]. Beijing: China Railway Publishing House, 2018.
[23]  苏乾坤,杨荣山,南雄,等. 基于极限状态法的宽轨距CRTSⅢ型板式无砟轨道配筋研究[J]. 铁道科学与工程学报,2016, 13(11):2107-2114.  Su Qiankun, Yang Rongshan, Nan Xiong, et al. Research on Reinforcement of Wide-gauge CRTS ⅲ Plate-type Ballastless Track Based on Limit State Method [J]. Journal of Railway Science and Engineering, 2016, 13(11): 2107-2114.

PDF(3963 KB)

548

Accesses

0

Citation

Detail

段落导航
相关文章

/