地效翼的颤振特性研究

赵奥博1,2,郑冠男1,2,黄程德1,杨国伟1,2,陈玮琪3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 265-274.

PDF(3450 KB)
PDF(3450 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 265-274.
论文

地效翼的颤振特性研究

  • 赵奥博1,2,郑冠男1,2,黄程德1,杨国伟1,2,陈玮琪3
作者信息 +

Flutter characteristics of ground effect wings

  • ZHAO Aobo1,2, ZHENG Guannan1,2, HUANG Chengde1, YANG Guowei1,2, CHEN Weiqi3
Author information +
文章历史 +

摘要

地面效应是指当机翼贴近地面飞行时,由于受到地面的干扰作用而引起升力增加和阻力降低的现象。本文研究地面效应对颤振的影响规律。建立基于计算流体力学/计算结构力学耦合的颤振计算方法,采用标模AGARD 445.6机翼对颤振计算方法进行验证。在此基础上,以贴近地面的三维机翼为研究对象开展颤振分析,研究指出地面效应增强了非定常气动力的幅值,而且离地越近这种效果就越明显,从而导致颤振速度随着离地高度的降低而减小。然后重点讨论了攻角对地效翼颤振的影响,与不考虑地效的经典线性颤振理论不同,本文指出地效翼的颤振速度与攻角有关,在地效区域内,增加机翼的攻角会使发生颤振时的静变形变大,导致机翼抬起和离地高度增加,地效减弱,使得颤振速度随攻角的增大而提高。

Abstract

Ground effect refers to the phenomenon that the lift increases and the drag decreases due to the interference of the ground when the wing is flying close to the ground.  The ground effect on flutter characteristics is investigated in this paper. The computational fluid dynamics / computational structural dynamics coupling method is constructed for flutter calculations. The AGARD wing 445.6 is adopted to validate the flutter calculation method. On this basis, the flutter analysis of a three-dimensional wing close to the ground is carried out. Results show that the ground effect can increase the amplitudes of unsteady aerodynamic forces and this effect becomes more significant as the wing gets closer to the ground, so that the flutter speed decreases with the decrease of ground clearance. Then, the influence of angle of attack on flutter characteristics of ground effect wings is discussed. Different from the classical linear flutter theory without the ground effect, this work points out that the flutter speed of ground effect wing is related to the angle of attack. In the region of ground effect, the increase of angle of attack will increase the static deformation for flutter, raising the wing and resulting in the increase of ground clearance, so that the ground effect is weakened and the flutter speed increases. 

关键词

地面效应 / CFD/CSD耦合 / 颤振

Key words

ground effect / CFD / CSD coupling / flutter

引用本文

导出引用
赵奥博1,2,郑冠男1,2,黄程德1,杨国伟1,2,陈玮琪3. 地效翼的颤振特性研究[J]. 振动与冲击, 2023, 42(17): 265-274
ZHAO Aobo1,2, ZHENG Guannan1,2, HUANG Chengde1, YANG Guowei1,2, CHEN Weiqi3. Flutter characteristics of ground effect wings[J]. Journal of Vibration and Shock, 2023, 42(17): 265-274

参考文献

1. Yun L, Bliault A, Doo J. WIG craft and ekranoplan, ground effect craft technology [M]. Springer, 2010
2. 曹楷, 蒋荣, 黄淼, 等. 串列地效翼布局水陆两栖飞机气动特性研究[J].飞行力学, 2020, 38(5): 20-26. CAO Kai, JIANG Rong, HUANG Miao, et al. Aerodynamic characteristics of amphibian with tandem ground-effect wing configuration [J]. Flight Dynamics, 2020, 38(5): 20-26.
3. Tumse S, Tasci M O, Karasu I, et al. Effect of ground on flow characteristics and aerodynamic performance of a non-slender delta wing [J]. Aerospace Science and Technology, 2021, 110
4. Boschetti P J, Cárdenas E M, González P J, et al. Nonlinear aerodynamic model for wings in dynamic ground effect [J]. Journal of Aircraft, 2020, 57(6): 1234-1241
5. Rozhdestvensky, K V. Wing-in-ground effect vehicles [J]. Progress in Aerospace Sciences, 2006, 42(3): 211–283.
6. 陈文,窦忠谦,何俊,等. 基于地面共振试验的操纵面间隙非线性颤振分析方法[J]. 振动与冲击, 2020, 39(16): 75-80. CHEN Wen,DOU Zhongqian,HE Jun,et al. A numerical method based on ground vibration test for flutter analysis of the control surface with freeplay nonlinearity. Journal of Vibration and Shock, 2020, 39(16): 75-80.
7. 张桂玮,谭光辉,徐钦炜,等. 地面颤振模拟试验中加载系统动态特性的影响研究[J]. 振动与冲击, 2020, 39(16): 214-221. ZHANG Guiwei, TAN Guanghui, XU Qinwei, et al. A study on the impact of dynamic characteristics of a loading system in ground flutter simulation. Journal of Vibration and Shock, 2020, 39(16): 214-221.
8. 郑宇宁. 多源不确定性条件下气动弹性系统颤振可靠性分析方法[J]. 振动与冲击, 2021, 40(3): 54-62. ZHENG Yuning. Flutter reliability analysis method of aeroelastic system under multi-source uncertainty. Journal of Vibration and Shock, 2021, 40(3): 54-62.
9. 段静波,徐步青. 亚音速流场中曲线纤维变刚度复合材料壁板颤振特性研究[J]. 振动与冲击, 2021, 40(21): 258-265. DUAN Jingbo, XU Buqing. Flutter characteristics of curved fiber variable-stiffness composite panels in subsonic flow field. Journal of Vibration and Shock, 2021, 40(21): 258-265.
10. 张婷婷,周健斌,窦忠谦,等. 基于多项式修正片条气动力的跨音速颤振分析方法及其试验验证[J]. 振动与冲击, 2022, 41(1): 19-23. ZHANG Tingting, ZHOU Jianbin, DOU Zhongqian, et al. Transonic flutter analysis method based on polynomial modified strip aerodynamic force and its test verification. Journal of Vibration and Shock, 2022, 41(1): 19-23.
11. 李治涛,韩景龙,员海玮. 带有双线性非线性全动舵面气动弹性的数值与试验研究[J]. 振动与冲击, 2020, 39(19): 234-242. LI Zhitao, HAN Jinglong, YUAN Haiwei. Simulation and tests for aeroelasticity of a fully moving rudder surface with bilinear nonlinearity. Journal of Vibration and Shock, 2020, 39(19): 234-242.
12. 张思煜, 聂宏, 魏小辉, 等. 超巨型地效飞行器巡航状态气动特性数值模拟[J]. 机械设计与制造工程, 2020, 49(7): 55-59. ZHANG Siyu, NIE Hong, WEI Xiaohui, et al. Integral design and aerodynamic characteristic research on the large wig craft under cruise [J]. Machine Design and Manufacturing Engineering, 2020, 49(7): 55-59.
13. 李永胜,王纬波,张彤彤. 复合材料地效翼船结构设计计算方法研究[J]. 中国舰船研究, 2020, 15(4): 73-81. LI Yong Sheng,WANG Wei Bo,ZHANG Tong Tong. Investigation of structural design and analysis method for composite wing-in-ground craft [J]. Chinese Journal of Ship Research,2020, 15(4): 73-81.
14. Barber T. Aerodynamic ground effect: a case study of the integration of CFD and experiments [J]. International Journal of Vehicle Design, 2006, 40(4): 299–316.
15. Ahmed M R, Takasaki T, Kohama Y . Aerodynamics of a NACA4412 airfoil in ground effect [J]. AIAA Journal,2007,45(1): 37-47.
16. Qu Q L, Wang W, Liu P Q, et al. Airfoil aerodynamics in ground effect for wide range of angles of attack [J]. AIAA Journal, 2015, 53(4): 1-14.
17. Rojewski A, Bartoszewicz J. Airfoil selection for wing in ground effect craft [J]. Journal of KONES Powertrain and Transport,2017,24(4): 265-269.
18. Rojewski A, Bartoszewicz J. Flaps influence on wing in ground effect lift coefficient [J]. Journal of KONES Powertrain and Transport, 2017, 24(2): 211-216.
19. Rojewski A, Bartoszewicz J. Numerical investigation of endplates influence on the wing in ground effect lift force [J]. Journal of KONES Powertrain and Transport, 2019, 26(4): 205-210.
20. 刘浩,孙建红,张延泰,等. 地面效应下的不同翼型亚声速气动特性分析[J]. 南京航空航天大学学报,2020,52(3):408⁃415. LIU Hao,SUN Jianhong,ZHANG Yantai,et al. Aerodynamic characteristics of different airfoil in subsonic flow with ground effect [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(3): 408⁃415.
21. Li Yanghui, Fu Xiaoqin, Chen Jichang, et al. Numerical simulation of seaplane wave ground effect with crosswind [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(S): 1-9.
22. Li Yongcheng, Pan Z, Zhang N. Numerical analysis on the propulsive performance of oscillating wing in ground effect [J]. Applied Ocean Research, 2021, 114.
23. Chernousov V I, Krutov A A, Savin P V, et al. Ground effect aerodynamics of twin fuselage aircraft [C]. IOP Conference Series: Materials Science and Engineering, September, 2021,Salerno, Italy
24. 张斌, 徐敏, 谢亮. 地效对二维气动弹性特性的影响 [J]. 航空学报, 2014, 35(8): 2156-2162. ZHANG Bin, XU Min, XIE Liang. Influence on two dimensional aeroelastic characteristics in ground effect [J]. Acta Aeronautica et Astronautica Sinica, 2014,35(8): 2156-5162.
25. Nuhait A O, Mook D T. Aeroelastic Behavior of Flat Plates Moving Near the Ground [J]. Journal of aircraft, 2010, 47(2) :464-474.
26. Dessi D, Mastroddi F, Mancini S. Analytical formulation of 2-D aeroelastic model in weak ground effect [J]. Journal of Fluids and Structures, 2013. 42: 270-295.
27. Bang C S, Zeeshan A R, Könözsy L, et al. Aeroelastic Analysis of a single element composite wing in ground effect using fluid-structure interaction [J]. Journal of Fluids Engineering, 2022, 144(4).
28. Dhital K, Han J H. Ground Effect on Flutter and Limit Cycle Oscillation of Airfoil with Flap [J]. Journal of Aircraft, 2021, 58(3): 688-692.
29. Huang C, Huang J, Song X, et al. Aeroelastic simulation using CFD/CSD coupling based on precise integration method [J]. International Journal of Aeronautical and Space Sciences, 2020, 21: 750–767.
30. Rendall T C S, Allen C B. Unified fluid–structure interpolation and mesh motion using radial basis functions [J]. International Journal for Numerical Methods In Engineering, 2008, 74:1519–1559
31. HUANG Chengde, LIU Wen, YANG Guowei. Numerical studies of static aeroelastic effects on grid fin aerodynamic performances [J]. Chinese Journal of Aeronautics, 2017, 30(4): 1300–1314
32. Rendall T C S, Allen C B. Efficient mesh motion using radial basis functions with data reduction algorithms [J]. Journal of Computational Physics, 2009, 228(17): 6231-6249
33. Yates E C. AGARD standard aeroelastic configurations for dynamic response. Candidate configuration  I. - Wing 445.6 [R]. NASA-TM-100492, 1987
34. Liu Zhongyu, Nie Xueyuan, Zheng Guannan, et al. Time-Domain Aeroelasticity Analysis by a Tightly Coupled Fluid-Structural Interaction Methodology [J]. Applied Sciences, 2021, 11, 5389
35. 段成荫,邓洪洲. 基于特征系统实现算法的输电塔气动阻尼风洞试验研究[J].振动与冲击, 2014,33(21):131-136. DUAN Cheng-yin, DENG Hong-zhou. Wind tunnel tests for aerodynamic damping of a transmission tower based on eigensystem realization algorithm [J]. Journal of Vibration and Shock, 2014,33(21):131-136.
36. 杨超 主编. 飞行器气动弹性原理(第2版)[M].北京航空航天大学出版社,2016

PDF(3450 KB)

Accesses

Citation

Detail

段落导航
相关文章

/