冲击载荷下实心与空心颗粒材料缓冲性能的对比实验研究

王浩宇1,赵婷婷1,2,冯云田1,3,梁绍敏1,王志华1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 275-283.

PDF(2220 KB)
PDF(2220 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 275-283.
论文

冲击载荷下实心与空心颗粒材料缓冲性能的对比实验研究

  • 王浩宇1,赵婷婷1,2,冯云田1,3,梁绍敏1,王志华1
作者信息 +

Contrastive experiments for buffering capacities of solid and hollow particle materials under impact load

  • WANG Haoyu1, ZHAO Tingting1,2, FENG Yuntian1,3, LIANG Shaomin1, WANG Zhihua1
Author information +
文章历史 +

摘要

空心颗粒材料与实心颗粒材料相比,可以在节约材料消耗的同时达到轻质化目的,是具有良好发展前景的缓冲材料。本文在测量单个空心及实心颗粒物理特性的基础上,通过物理实验从冲击力第一峰值和缓冲耗时两个方面探讨了冲击能量、颗粒床厚度和颗粒粒径等因素对空心及实心颗粒材料缓冲性能的影响。实验结果表明:单个空心颗粒的等效弹性模量及回弹系数均小于实心颗粒。当冲击能量较小时,空心颗粒材料对峰值冲击缓冲效率优于实心颗粒材料,当冲击能量较大时,空心颗粒缓冲性能的优势主要体现在对峰值冲击力的减弱。空心颗粒材料的临界厚度小于实心颗粒材料,但在颗粒床厚度较小时的缓冲效率比实心颗粒差。颗粒粒径对空心及实心颗粒材料缓冲性能的影响呈现相反的趋势,振动耗能是影响空心颗粒缓冲性能的主要因素。空心颗粒的内外径满足一定比例关系时会达到最优的缓冲性能,因此颗粒粒径超过平衡粒径后,空心颗粒材料相较于实心材料不再具有缓冲性能的优势。

Abstract

Compared with solid particle materials, hollow particle materials can achieve the purpose of lightening weight and saving material consumption which have the growth potential to become good buffering materials. On the basis of measuring the physical properties of the single hollow and solid particles, the buffering capacity of hollow and solid particle materials are studied by comparing the first peak of impact force and buffering time from physical experimental results. The effects of impact energy, particle bed thickness and particle size on buffering capacity of hollow and solid particle materials are investigated. The experimental results show that the elastic modulus and rebound coefficient of single hollow particle are smaller than that of solid particle. Under the low impact energy, the buffering efficiency of hollow particle materials are better than that of solid particle materials. When the impact energy is large, the advantage of hollow particle buffer capacity is mainly reflected in the weakening ability of peak impact force. The critical thickness of hollow particle materials is smaller than that of solid particle materials, but the buffering efficiency of hollow particle materials is worse than that of solid particle when the thickness of the particle bed is small. The influence of particle size on buffering capacity of hollow and solid particle materials presents opposite trends. The vibration energy dissipation is the main factor affecting the buffering capacity of hollow particle materials. The optimal buffering capacity of hollow particle materials can be achieved when the ratio of inner and outer diameters of hollow particles equals to a certain number. Therefore, when the particle size exceeds the equilibrium particle size, hollow particle materials no longer show better buffering capacity compared with solid materials.

关键词

颗粒物质 / 空心颗粒 / 缓冲性能 / 冲击载荷

Key words

particle materials / hollow particles / buffering capacity / impact load

引用本文

导出引用
王浩宇1,赵婷婷1,2,冯云田1,3,梁绍敏1,王志华1. 冲击载荷下实心与空心颗粒材料缓冲性能的对比实验研究[J]. 振动与冲击, 2023, 42(17): 275-283
WANG Haoyu1, ZHAO Tingting1,2, FENG Yuntian1,3, LIANG Shaomin1, WANG Zhihua1. Contrastive experiments for buffering capacities of solid and hollow particle materials under impact load[J]. Journal of Vibration and Shock, 2023, 42(17): 275-283

参考文献

[1] 季顺迎,樊利芳,梁绍敏.基于离散元方法的颗粒材料缓冲性能及影响因素分析[J].物理学报,2016,65(10):104501.
JI Shunying, FAN Lifang, LIANG Shaomin, Buffer capacity of granular materials and its influencing factors based on discrete element method[J]. Acta Physica. Sinica, 2016,65(10):104501.
[2] 季顺迎,李鹏飞,陈晓东.冲击荷载下颗粒物质缓冲性能的试验研究[J].物理学报,2012,61(18):184703.
JI Shunying, LI Pengfei, CHEN Xiaodong. Experiments on shock-absorbing capacity of granular matter under impact load[J]. Acta Physica. Sinica, 2012,61(18):184703.
[3] MUETH D M, JAEGER H M, NAGEL S R. Force distribution in a granular medium[J]. Physical Review E, 1998, 57(3): 3164–3169.
[4] HOWELL D, BEHRINGER R P, VEJE C. Stress fluctuations in a 2D granular Couette experiment: a continuous transition[J]. Physical Review Letters, 1999, 82(26): 5241-5244.
[5] NORDSTROM K, LIM E, HARRINGTON M, et al. Granular dynamics during impact[J]. Physical Review Letters, 2014, 112(22): 228002.
[6] 余田,张国华,孙其诚,等.垂直振动激励下颗粒材料有效质量和耗散功率的研究[J].物理学报,2015,64(4): 044501.
YU Tian, ZHANG Guohua, SUN Qicheng, et al. Dynamic effective mass and power dissipation of the granular material under vertical vibration[J]. Acta Physica Sinica, 2015,64(4): 044501.
[7] TANAKA K, NISHIDA M, KUNIMOCHI T, et al. Discrete element simulation and experiment for dynamic response of two-dimensional granular matter to the impact of a spherical projectile[J]. Powder Technology, 2002, 124(1/2): 160-173.
[8] 王嗣强,季顺迎.基于超二次曲面的颗粒材料缓冲性能离散元分析[J].物理学报,2018,67(9):094501.
WANG Siqiang, JI Shunying. Discrete element analysis of buffering capacity of non-spherical granular materials based on super-quadric method[J]. Acta Physica. Sinica, 2018,67(9): 094501.
[9] 穆龙,张晨,张祺,等.非凸体颗粒材料缓冲性能的离散元模拟[J].太原理工大学学报,2019,50(2):226-233.
MU Long, ZHANG Chen, ZHANG Qi, et al. Buffering capacity of non-convex granular materials based on discrete element method[J]. Journal of Taiyuan University of Technology, 2019,50(2):226-233.
[10] SU Y, CHOI C E, NG C W W, et al. Eco-friendly recycled crushed glass for cushioning boulder impacts[J]. Canadian Geotechnical Journal, 2019, 56(9):1251-1260.
[11] SU Y, CUI Y, NG C W W, et al. Effects of particle size and cushioning thickness on the performance of rock-filled gabions used in protection against boulder impact[J]. Canadian Geotechnical Journal, 2019, 56(2): 198-207.
[12] HOU M, PENG Z, LIU R, et al. Projectile impact and penetration in loose granular bed[J]. Science and Technology of Advanced Materials, 2005, 6(7): 855-859.
[13] WALSH A M, HOLLOWAY K E, HABDAS P, et al. Morphology and scaling of impact craters in granular media[J]. Physical Review Letters, 2003, 91(10):104301.
[14] CLARK A H, BEHRINGER R P. Granular impact model as an energy-depth relation[J]. Epl, 2013, 101(6):64001-64006.
[15] KATSURAGI H, DURIAN D J. Unified force law for granular impact cratering[J]. Nature Physics, 2007, 3(6):420-423.
[16] ANTYPOV D, ELLIOTT J A , HANCOCK B C . Effect of particle size on energy dissipation in viscoelastic granular collisions[J]. Physical Review E, 2011, 84(2 Pt 1):021303.
[17] ZHAO Z, LIU C, BROGLIATO B. Energy dissipation and dispersion effects in granular media[J]. Physical Review E, 2008, 78(3):031307.
[18] 何思明,吴永,李新坡,等.颗粒弹塑性碰撞理论模型[J].工程力学,2008, 25(12): 19-24.
HE Siming, WU Yong, LI Xinpo,el al. Theoretical model on elastic-plastic granule impact[J]. Journal of Engineering Mechanics, 2008, 25(12): 19-24.
[19] OGALE S B , SHINDE S R , KARVE P A , et al. Impact-induced splash and spill in a quasi-confined granular medium[J]. Physica A Statistical Mechanics & Its Applications, 2006, 363(2):187-197.
[20] YE X, WANG D, ZHENG X. Influence of particle rotation on the oblique penetration in granular media[J]. Physical Review E, 2012, 86:061304.
[21] 孙其诚,王光谦.静态堆积颗粒中的力链分布[J].物理学报,2008, 57(8): 4667-4674.
SUN Qicheng, WANG Guangqian. Force distribution in static granular matter in two dimensions[J]. Acta Physica Sinica, 2008, 57(8): 4667-4674.
[22] 李鹏飞. 颗粒物质缓冲性能的试验测试与离散元分析[D]. 大连:大连理工大学,2013.
[23] YE X, WANG D, ZHENG X. Criticality of post-impact motions of a projectile obliquely impacting a granular medium[J]. Powder Technology, 2016, 301: 1044-1053.
[24] CLARK A H, PETERSEN A J, KONDIC L, et al. Nonlinear force propagation during granular impact[J]. Physical Review Letters, 2015, 114(14).
[25] 何思明,廖祖伟,刘威,等.颗粒物质冲击损伤特性研究[J].振动与冲击,2016, 35(23): 100-105.
HE Siming, LIAO Zuwei, LIU Wei, et al. Study on impact damage of granular material[J]. Journal of Vibration and Shock, 2016, 35(23): 100-105.
[26] 王振宇,周伟,马刚,等.水平振动情况下颗粒系统振动分离机理的离散元数值研究[J].振动与冲击,2016, 35(16): 24-29.
WANG Zhenyu, ZHOU Wei, MA Gang, et al. Numerical simulation of the microscopic mechanism of the particle separation under the condition of horizontal vibration[J]. Journal of Vibration and Shock, 2016, 35(16): 24-29.
[27] CORE A, KOPP J B, VIOT P, et al. Experimental investigation and discrete element modelling of composite hollow spheres subjected to dynamic fracture[J]. International Journal of Polymer Science, 2017,2017:1-15.
[28] CORE A, KOPP J B, GIRARDOT J, et al. Study of the dynamic fracture of hollow spheres under compression using the discrete element method[J]. Procedia Structural Integrity, 2018, 13:1378-1383.
[29] 范志强,何天明,刘迎彬,等.冲击载荷下脆性空心颗粒破碎机理[J]. 爆炸与冲击, 2021, 41(7): 10.
FAN Zhiqiang, HE Tianming, LIU Yingbin, et al. Breaking mechanisms of brittle hollow particles under impact loading[J]. Explosion and Shock Waves, 2021, 41(7): 10.
[30] FAN Zhiqiang, SUO Tao, NIE Taoyi, et al. Low-velocity impact response and breakage characteristics of hollow brittle particles[J]. International Journal of Impact Engineering, 2020, 150(1):103813.

PDF(2220 KB)

Accesses

Citation

Detail

段落导航
相关文章

/