一种基于流固耦合问题的低频散射声场预报方法

唐永壮,周其斗,谢志勇,刘文玺,赵鹏

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 78-85.

PDF(3377 KB)
PDF(3377 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 78-85.
论文

一种基于流固耦合问题的低频散射声场预报方法

  • 唐永壮,周其斗,谢志勇,刘文玺,赵鹏
作者信息 +

A method for low frequency scattering sound field prediction based on fluid-structure interaction

  • TANG Yongzhuang, ZHOU Qidou, XIE Zhiyong, LIU Wenxi, ZHAO Peng
Author information +
文章历史 +

摘要

提出了一种流固耦合作用下的低频散射声场预报方法。从边界积分方程出发,推导弹性散射中流固耦合方程,通过引入附加质量、附加阻尼、附加压力概念实现解耦。将弹性散射表述为纯刚性散射项与二次辐射项的叠加,建立了刚性散射与弹性散射的联系。与辐射问题不同,散射中流体对结构的作用不仅表现为附加质量和附加阻尼,还存在一个与结构响应无关的压力项,且该压力项是二次辐射项的激励源。采用Fortran编写了边界元算法程序,用DMAP语言实现与NASTRAN的对接,形成了完整的散射声场预报方法,通过与理论结果对比,验证了预报方法的正确性。圆柱壳散射的计算结果表明:低频散射时弹性不可忽略;圆柱壳厚度对弹性散射强度和指向性有明显影响;肋骨对柱壳散射的影响与振动形式有关,环肋骨对以弯曲模态为主的弹性散射影响很小。

Abstract

A method is purposed to predict the scattering acoustic pressure with fluid-structure interaction at low frequency. Based on the boundary integral equation, the formula coupled with fluid and structure in elastic scattering is established, then the concept of added mass, added damp and added pressure are used to solve the coupled equation. The relationship between rigid scattering and elastic scattering is studied, and the elastic scattering acoustic pressure is the superposition of rigid scattering and secondary radiation. Different with radiation, the effect of fluid acted on structure includes add pressure besides added mass and damp in scattering problem. The boundary element program is coded by FORTRAN and the DMAP of NASTRAN is used to connect the code with NASTRAN. Comparing the theoretical data and numerical result, the method is verified in this paper. The scattering pressure of cylinder with rib is computed, and the numerical results show that: The elastic effect cannot be ignored for scattering at low frequency. The thickness of shell has influence on scattering intensity and directivity patterns obviously while the effect of rib depends on the vibrational shape at particular frequency.

关键词

散射声场预报 / 边界积分方程 / 流固耦合 / DMAP语言

Key words

the prediction of acoustic scattering / boundary integral equation / fluid-structure coupling / DMAP language

引用本文

导出引用
唐永壮,周其斗,谢志勇,刘文玺,赵鹏. 一种基于流固耦合问题的低频散射声场预报方法[J]. 振动与冲击, 2023, 42(17): 78-85
TANG Yongzhuang, ZHOU Qidou, XIE Zhiyong, LIU Wenxi, ZHAO Peng. A method for low frequency scattering sound field prediction based on fluid-structure interaction[J]. Journal of Vibration and Shock, 2023, 42(17): 78-85

参考文献

[1] Junger M C, Feit D. Sound Structure and Their Interaction [M]. Vol 3. US: The MIT Press, 1986: 313—384.
[2] Chung Y T, Glenn N R, Gaunaurd G C. Resonance scattering by elastic cylinders and their experimental verification [J]. J.Acoustic.Soc.Am, 1986, 80: 382-390.
[3] Morse P M, Ingard K U. Theoretical Acoustics [M]. Princeton New Jersey: Princeton University Press, 1987: 400-466.
[4] 汤渭霖,范军,马忠成. 水中目标声散射 [M] 北京:科学出版社, 2018: 215-254.
Tang W L, Fan J, Ma Z C. Acoustic Scattering from Underwater Targets [M]. Beijing: Science Press, 2018:215-254.
[5] Zhen G Y, Fan J, Tang W L. Low-Frequency Echo from Finite Ring-Stiffened Double Cylindrical Shells: Approximate Theory and Experiment [J]. Journal of ship Mechanics,2011,15(12): 1451.
[6] 潘安,范军,王斌,等.双层周期加肋有限长圆柱壳声散射精细特征研究[J].物理学报,2014,63(21):165-180.
Pan A, Fan J, Wang B, et al. Acoustic scattering from the finite periodically ribbed two concentric cylindrical shells[J]. Acta Physical Sinisa, 2014,63(21):165-180.
[7] Everstine G C. Finite element formulations of structural acoustics problems[J]. Computers & Structures, 1997, 65(3):307-321.
[8] Everstine G C. Coupled finite element/boundary element approach for fluid- structure interaction[J]. Journal of the Acoustical Society of America, 1998, 87(5):1938-1947.
[9] Zhou Q, Joseph P F. A numerical method for the calculation of dynamic response and acoustic radiation from an underwater structure[J]. Journal of Sound and Vibration, 2005, 283(3-5):853-873.
[10] 汤渭霖,范军.水中弹性结构声散射和声辐射机理—结构和水的声-振耦合作用[J].声学学报,2004,05: 385-392.
Tang W L, Fan J. Mechanisms of sound scattering and radiation of submerged elastic structure vibration acoustic coupling of structure and water[J]. ACTA ACOUSTIC, 2004,05:385-392.
[11] 卓琳凯,范军,汤渭霖.FEM-BEM耦合方法分析弹性目标的声散射问题[J].上海交通大学学报,2009,43(08):1258-1261.
Zhuo L K, Fan J, Tang W L. Analyzing Acoustic Scattering of Elastic Objects Using Coupled FEM-BEM Technique[J]. Journal of Shanghai Jiaotong University, 2009,43(08):1258-1261.
[12] 蔡堉楠,黎胜,等.弹性颗粒声散射问题直接模拟的IB-LBM研究[J].振动与冲击,2020, 373(17):219-225.
Cai Y N, Li S, et al. Direct simulation of acoustic scattering problem of elastic particles using improved IB-LBM[J]. Journal of Vibration and Shock,2020, 373(17): 219-225.
[13] 胡珍,范军,张培珍,等.水下掩埋目标的散射声场计算与实验[J].物理学报, 2016, 65(06): 174-181.
Hu Z, Fan J, Zhang P Z, et al. Acoustic scattering from elastic target buried in water-sand sediment[J]. Acta Phys Sin, 2016, 65(06): 174-181.
[14] 周烨,温玮,等.基于声固耦合的水下复杂目标声散射研究[J].水下无人系统学报,2020,28(01):51-56.
Zhou Y, Wen W, et al. Research on Acoustic Scattering of Underwater Complicated Target Based on Sound- Solid Coupling[J]. Journal of unmanned undersea systems,2020,28(01):51-56.
[15] Junger M C. Sound Scattering by Thin Elastic Shells[J]. The Journal of the Acoustical Society of America, 1952, 24(4):455-455.
[16] Tran-Van-Nhieu M. Scattering from a ribbed finite cylindrical shell[J]. The Journal of the Acoustical Society of America, 2001, 110(6):2858-2866.
[17] Chen L H, Schweikert D G. Sound Radiation from an Arbitrary Body[J]. Journal of the Acoustical Society of America, 1963, 35(10):1626-1632.
[18] 魏克难,李威,雷明,等.基于耦合边界元法的水下目标低频声散射特性[J].舰船科学技术,2014,36(10): 32-36.
Wei K N, Li W. The low-frequency acoustic scattering characteristics study on underwater targets by the coupled boundary element method[J]. Ship science and technology, 2014,36(10):32-36.
[19] 王晓强.复合材料加筋圆柱壳的低频声散射特性研究[J].复合材料科学与工程,2020,03:66-69.
Wang X Q, The analysis of low frequency acoustic scattering characteristics of composite stiffness cylindrical shells[J]. Composites Science and Engineering, 2020,03:66-69.

PDF(3377 KB)

Accesses

Citation

Detail

段落导航
相关文章

/