Taylor撞击塑性变形的尺寸效应研究

沈子楷1,2,戴湘晖2,王可慧2,钱秉文2,范如玉1,2,高鹏飞2,柯明1,2,周刚2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 86-95.

PDF(3365 KB)
PDF(3365 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (17) : 86-95.
论文

Taylor撞击塑性变形的尺寸效应研究

  • 沈子楷1,2,戴湘晖2,王可慧2,钱秉文2,范如玉1,2,高鹏飞2,柯明1,2,周刚2
作者信息 +

Size effect of Taylor impact plastic deformation

  • SHEN Zikai1,2, DAI Xianghui2, WANG Kehui2, QIAN Bingwen2, FAN Ruyu1,2, GAO Pengfei2, KE Ming1,2, ZHOU Gang2
Author information +
文章历史 +

摘要

Taylor撞击是结构冲击问题的一种典型情况,能够将应变率对尺寸效应的影响进行解耦。建立了考虑尺寸效应的Taylor杆变形理论解析模型,开展了系统的不同缩比尺寸下的Taylor撞击实验,结合直接测量、三维扫描和扫描电子显微镜微观分析,对Taylor撞击过程中的尺寸效应进行了量化表征。结果表明:在宏观和微观上Taylor撞击塑性变形均存在尺寸效应,200m/s撞击速度下,1/2缩比、3/10缩比尺寸的Taylor杆无量纲长度变化量与原型实验的偏差分别为-3.75%、-7.25%,获得的Taylor杆变形公式能够很好地描述Taylor撞击实验的尺寸效应。应变率效应是导致Taylor撞击塑性变形尺寸效应的主要原因,在相同实验条件下,Taylor杆尺寸越小,应变率越高,无量纲塑性变形越小。

Abstract

Taylor impact is a typical case of structural impact problem, which can decouple the effect of strain rate on size effect. An analytical model of Taylor bar deformation considering size effect was established. The Taylor impact experiment under different scale was carried out, and the size effect was quantified by direct measurement, three-dimensional scanning and scanning electron microscope microanalysis. The results show that the size effect of plastic deformation during Taylor impact test exists both at macro and micro level. Under the velocity of 200m/s impact, the deviation of dimensionless length variation of Taylor bar at 1/2 size and 3/10 size is -3.75% and -7.25%, respectively. The deformation formula of Taylor bar can describe the size effect of Taylor impact well. The strain rate effect is the main reason for the size effect of Taylor bar plastic deformation. Under the same experimental conditions, the smaller the Taylor bar size, the higher the strain rate, and the smaller the dimensionless plastic deformation.

关键词

Taylor实验 / 塑性变形 / 应变率 / 相似 / 尺寸效应

Key words

Taylor impact test / plastic deformation / strain rate / similarity / size effect

引用本文

导出引用
沈子楷1,2,戴湘晖2,王可慧2,钱秉文2,范如玉1,2,高鹏飞2,柯明1,2,周刚2. Taylor撞击塑性变形的尺寸效应研究[J]. 振动与冲击, 2023, 42(17): 86-95
SHEN Zikai1,2, DAI Xianghui2, WANG Kehui2, QIAN Bingwen2, FAN Ruyu1,2, GAO Pengfei2, KE Ming1,2, ZHOU Gang2. Size effect of Taylor impact plastic deformation[J]. Journal of Vibration and Shock, 2023, 42(17): 86-95

参考文献

[1] Bazant Z P, Chen E P. Scaling of structural failure[J]. Applied Mechanics Reviews, 1997,50(10):593-627.
[2] 白以龙. 工程结构损伤的两个重要科学问题——分布式损伤和尺度效应[J]. 华南理工大学学报(自然科学版), 2002,30(11):11-14.
BAI Yi-long. Two important scientific problems in engineering structures——Distributed Damages and Scale Effect [J]. Journal of South China University of Technology(Nature Science Edition), 2002,30(11):11-14.
[3] 张守保, 刘新房. 侵彻爆炸效应实验中应重视的若干问题[C]//第四届全国爆炸力学实验技术学术会议论文集. 中国福建武夷山: 2006: 306-312.
ZHANG Shou-bao, LIU Xin-fang. Several issues should be emphasized in penetration and explosion effect experiment[C]// Proceedings of the Fourth National Conference on Explosive Mechanics experimental Technology. Mount Wuyi, Fujian, China: 2006: 306-312.
[4] Scott A M, Charles E A, Andrew J P, et al. Scale model penetration experiments: finite thickness steel targets[R].U.S. Army Research Office Advanced Research Projects Agency, 1995.
[5] Me-Bar Y. A method for scaling ballistic penetration phenomena[J]. International Journal of Impact Engineering, 1997,19(9-10):821-829.
[6] Oshiro R E, Alves M. Scaling impacted structures[J]. Archive of Applied Mechanics, 2004,74(1-2):130-145.
[7] Oshiro R E, Calle M A G, Mazzariol L M, et al. Experimental study of scaled T cross-section beams subjected to impact load[C] Brazilian Congress of Mechanical Engineering. 2011.
[8] Zhang Z H, Wang Y, Zhang L J, et al. Similarity research of anomalous dynamic response of ship girder subjected to near field underwater explosion[J]. Applied Mathematics and Mechanics, 2011, 32(12):1491-1504.
[9] 秦健,张振华. 原型和模型不同材料时加筋板冲击动态响应的相似预报方法[J]. 爆炸与冲击. 2010,30(05):511-516.
QIN Jian, ZHANG Zhen-hua. A scaling method for predicting dynamic responses of stiffened plates made of materials different from experimental models [J]. Explosion and Shock Waves,2010,30(05):511-516.
[10] 张振华, 陈平毅, 漆万鹏, 等. 舰船局部板架结构在水下爆炸冲击波下动态响应的相似律研究[J]. 振动与冲击, 2008,27(06):81-86, 189.
ZHANG Zhen-hua, CHEN Ping-yi, QI Wan-peng, et al. Scaling law of dynamic response of stiffed plates for a ship subjected to underwater shock [J]. Journal of Vibration and Shock. 2008,27(06):81-86, 189.
[11] 田常津,李思忠. 撞击穿甲缩比实验模化分析[J]. 兵器材料科学与工程. 1991(08):8-14.
TIAN Chang-jin, LI Si-zhong. Scaled experimental modeling analysis of impact piercing [J]. Ordnance Materials Science and Engineering, 1991(08):8-14.
[12] 刘源, 皮爱国, 杨荷, 等. 非等比例缩比侵彻/贯穿相似规律研究[J]. 爆炸与冲击, 2020,40(03):63-75.
LIU Yuan, PI Ai-guo, YANG He, et al. Study on similarity law of non-proportionally scaled penetration/perforation test [J]. Explosion and Shock Waves, 2020,40(03):63-75.
[13] 王帅, 徐绯, 代震, 等. 结构冲击畸变问题的直接相似方法研究[J]. 力学学报, 2020,52(03):774-786.
WANG Shuai, XU Fei, DAI Zhen, et al. A direct scaling method for the distortion problems of structural impact [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(03):774-786.
[14] Wang S, Xu F, Zhang X Y, et al. Material similarity of scaled models[J]. International Journal of Impact Engineering, 2021,156:1-15.
[15] Taylor G. The use of flat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations[J]. Proceedings Of The Royal Society Of London Series A-Mathematical And Physical Sciences, 1948,194:289-299.
[16] Whifin A C. The use of flat-ended projectiles for determining dynamic yield stress. II. Tests on various metallic materials[J]. Proceedings Of The Royal Society Of London Series A-Mathematical And Physical Sciences, 1948,194:300-322.
[17] Carrington W E, Gayler M L V. The use of flat-ended projectiles for determining dynamic yield stress. III. Changes in microstructure caused by deformation under impact at high-striking velocities[J]. Proceedings Of The Royal Society Of London Series A-Mathematical And Physical Sciences, 1948,194:323-331.
[18] Field J E, Walley S M, Proud W G, et al. Review of experimental techniques for high rate deformation and shock studies[J]. International Journal of Impact Engineering, 2004,30(7):725-775.
[19] 林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定[J]. 振动与冲击, 2014,33(09):153-158.
LIN Li, ZHI Xu-dong, FAN Feng, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014,33(09):153-158.
[20] Hawkyard J B. A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy considerations[J]. International Journal of Mechanical Sciences, 1969,11(3):313-333.
[21] 魏刚. 金属动能弹变形与断裂特性及其机理研究[D]. 哈尔滨工业大学, 2014.
WEI Gang. Investigation of deformation and fracture behavior associated mechanisms of the metal kinetic energy projectiles[D]. Harbin Institute of Techology,2014.
[22] 吕剑, 何颖波, 田常津, 等. 泰勒杆实验对材料动态本构参数的确认和优化确定[J]. 爆炸与冲击, 2006,26(04):339-344.
LÜ Jian, HE Ying-bo, TIAN Chang-jin, et al. Validation and optimization of dynamic constitutive model constants with Taylor test [J]. Explosion and Shock Waves, 2006,26(04):339-344.

PDF(3365 KB)

Accesses

Citation

Detail

段落导航
相关文章

/