针对高海况下细长杆件类结构物吊装效率低、风险大、难以实现精确吊装的问题,本文提出了基于柔索并联的细长杆件吊装减摇系统,并将其简化为有基座激励的受约束二级摆,运用机器人学方法建立细长杆件吊装减摇系统的动力学模型,采用Matlab/Simulink对基于柔索并联的细长杆件吊装减摇系统摆动的低频振动特性进行仿真分析,同时在细长杆件吊装减摇试验台上进行试验验证,仿真和试验结果表明:基于柔索并联的细长杆件吊装减摇系统对一级摆有良好的摆动抑制效果,在设定工况下对二级摆也有一定的减摇效果。论文研究成果可为细长杆件这类双摆系统的吊装减摇控制提供依据,同时为细长杆件吊装减摇系统的进一步的工程应用提供理论基础。
Abstract
The slender payload lifting is inefficient and comes with high risk in rough sea condition, thus it is difficult to achieve precise assembly. To address this issue, an anti-swing system for slender payload lifting based on the cable parallel mechanism is proposed in this paper, and it is simplified as a constrained double-pendulum system with moving base excitations. Further, the system dynamic model is established by applying the methods in robotics, meanwhile, the low frequency vibration characteristics of it are simulated and analyzed by Matlab/Simulink, and the experiment verification is carried out on the anti-swing device for slender payload. The simulation and experiment result show that the anti-swing system has good vibration suppression effect on the first stage pendulum, and it has certain vibration suppression effect on the second stage pendulum as well under setting conditions. The research results of this paper can provide theoretical basis for the anti-swing control when lifting the double-pendulum system like slender payload, It provides a theoretical basis for the further engineering application of the anti-swing system for slender payload lifting.
关键词
细长杆件 /
吊装 /
双摆系统 /
柔索并联 /
低频振动
{{custom_keyword}} /
Key words
slender payload /
lifting /
double-pendulum system /
cable parallel mechanism /
low frequency vibration
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BAPTISTA M S, HUNT B R, GREBOGI C, et al. Control of Shipboard Cranes [M]. IUTAM Symposium on Recent Developments in Non-linear Oscillations of Mechanical Systems. 2000: 75-84.
[2] ARKER G, GRAZIANO M, LEBAN F, et al. Reducing Crane Payload Swing Using A Rider Block Tagline Control System [J]. IEEE, 2007.
[3] SINGHOSE W E , PORTER L J , SEERING W P . Input shaped control of a planar gantry crane with hoisting[C]// American Control Conference. Albuquerque, NM:IEEE, 2002.
[4] SINGHOSE W E . Command Generation for Flexible Systems[J]. Thesismit, 2005.
[5] POTTER J J, SINGHOSE W E . Design and Human-in-the-Loop testing of reduced-modification input shapers[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4):1-8.
[6] KU N K , CHA J H , ROH M I , et al. A tagline proportional-derivative control method for the anti-swing motion of a heavy load suspended by a floating crane in waves[J]. Proceedings of the Institution of Mechanical Engineers Part M Journal of Engineering for the Maritime Environment, 2013, 227(4):357-366.
[7] HENRY, R J , MASOUD, et al. Cargo Pendulation Reduction on Ship-Mounted Cranes Via Boom-Luff Angle Actuation.[J]. Journal of Vibration & Control, 2001.
[8] MASOUD Z N , NAYFEH A H , MOOK D T . Cargo Pendulation Reduction of Ship-Mounted Cranes[J]. Nonlinear Dynamics, 2004, 35(3):299-311.
[9] NING S , WU Y , FANG Y , et al. Nonlinear Antiswing Control for Crane Systems With Double-Pendulum Swing Effects and Uncertain Parameters: Design and Experiments[J]. IEEE Transactions on Automation Science and Engineering, 2017, PP(99):1-10.
[10] 孙宁, 张建一, 吴易鸣, 等. 一种双摆效应桥式起重机光滑鲁棒控制方法[J]. 振动与冲击, 2019,38(22):1-6.
Sun Ning, Zhang Jianyi, Wu Yiming, et al. A Smooth and Robust Control Method for Bridge Crane with Double Pendulum Effect [J]. Journal of Vibration and Shock, 2019, 38(22):1-6.
[11] 王鹏程, 方勇纯, 相吉磊, 等. 回转旋臂式船用起重机的动力学分析与建模[J]. 机械工程学报, 2011, 47(20): 34-40.
WANG Pengcheng, FANG Yongchun, XIANG Jilei, et al. Dynamic Analysis and Modeling of Rotary Jib Marine Crane [J]. Journal of Mechanical Engineering, 2011, 47(20): 34-40.
[12] 訾斌, 周斌, 钱森, 等. 双台汽车起重机柔索并联装备变幅运动下的动力学建模与分析[J]. 机械工程学报, 2017, 53(07): 55-61.
ZI Bin, ZHOU Bin, QIAN Sen, et al. Dynamic Modeling and Analysis of Flexible Cable Parallel Equipment of Two Truck Cranes in Looping Motion [J]. Journal of Mechanical Engineering, 2017, 53(07): 55-61.
[13] WANG, SHENGHAI, FERRI, et al. Slipping Dynamics of Slender-Beam Payloads During Lay-Down Operations[J]. Journal of Dynamic Systems Measurement & Control, 2018.
[14] 王生海, 吴俊杰, 陈海泉, 等. 船用起重机机械防摆装置动力学分析与实验[J]. 哈尔滨工程大学学报, 2019, 40(11):7.
WANG Shenghai, WU Junjie, CHEN Haiquan, et al. Dynamic Analysis and Experiment of Mechanical Anti-swing Device for Marine Crane. Journal of Harbin Engineering University, 2019, 40(11):7.
[15] 陈海泉, 靳国良, 吉阳, 等. 船用起重机牵引索式减摇装置恒张力控制仿真和试验研究[J]. 中国造船, 2021, 62(2):13.
CHEN Haiquan, JIN Guoliang, JI Yang, et al. Simulation and Experimental Study on Constant Tension Control of Towing Cable Stabilizer for Marine Crane [J]. Shipbuilding of China, 2021, 62(2):13.
[16] 王建立, 王生海, 孙玉清, 等. 船用起重机伸缩套管防摆装置动力学分析与试验[J]. 振动与冲击, 2022, 41(11):141-148.
Wang Jianli, WANG Shenghai, Sun Yuqing, et al. Dynamic analysis and experiment of telescopic casing anti-swing Device for Marine Crane [J]. Journal of Vibration and Shock, 2022, 41(11):141-148.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}