高温超导磁悬浮列车振动特性分析及其参数可行域研究

张明亮1,2,杨新梦1,刘丽茹1,李明远1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (18) : 30-38.

PDF(2985 KB)
PDF(2985 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (18) : 30-38.
论文

高温超导磁悬浮列车振动特性分析及其参数可行域研究

  • 张明亮1,2,杨新梦1,刘丽茹1,李明远1
作者信息 +

Vibration characteristics and parameter feasible region of a type of HTS maglev

  • ZHANG Mingliang1,2,YANG Xinmeng1,LIU Liru1,LI Mingyuan1
Author information +
文章历史 +

摘要

高温超导磁悬浮列车在运行时由于轨道不平顺和风阻等因素的影响,导致悬浮间隙发生改变,列车的悬浮力特性使其具有恢复到原平衡位置的能力,在恢复过程中引起了列车的振动,需要研究列车的自由振动行为。通过实验平台测试得到不同悬浮间隙下高温超导体和永磁轨道之间的悬浮力,构造悬浮力的经验公式,基于经验公式建立列车自由振动下的动力学模型。利用无量纲化方法对动力学模型进行处理得到弱非线性系统,利用多尺度法对弱非线性系统进行解析求解,将近似解析解与数值解进行对比验证其正确性。基于近似解析解得到自由振动时列车的位移和最大加速度表达式,研究系统参数比阻尼和比刚度对最大加速度的影响规律,研究表明最大加速度随着比阻尼和比刚度的增大而增大。基于磁悬浮列车安全性和舒适性标准,提出一种判断系统参数可行域的解析方法,研究表明可行域呈现近似的三角形区域,并处于三角形的内部。这些研究结果为该类型磁悬浮列车磁轨关系的参数设计提供依据。

Abstract

Due to the influence of track irregularity and wind resistance and other factors, the suspension gap of high temperature superconductor (HTS) maglev changes during operation. The levitation force characteristics of the train have the ability to restore to the original equilibrium position. The vibration of the train will occur in the recovery process, therefore, the free vibration behavior of the train need to be studied. The levitation force between HTS and the permanent magnet track under different levitation gaps is measured by way of the experimental platform, and the empirical formula of levitation force is constructed. The dynamic model of train under free vibration is established based on empirical formula. The non-dimensionalization method is used to deal with the dynamic model to obtain the weak nonlinear system. The multi-scale method is used to solve the weak nonlinear system, and the approximate analytical solution is compared with the numerical solution to verify its correctness. Based on the approximate analytical solution, the expressions of displacement and maximum acceleration of the train under free vibration are obtained. The influence of system parameters (damping pre mass and stiffness pre mass) on the maximum acceleration is studied. The results show that the maximum acceleration increases with the increase of system parameters. Based on the safety and comfort standard of magnetic suspension vehicle, an analytical method to determine the feasible region of system parameters is proposed. The studied result shows that the feasible region presents an approximate triangular region. The purpose of this manuscript is to provide a basis for the parameter design of the magnetic track relationship of this type of maglev.

关键词

高温超导磁悬浮列车 / 多尺度法 / 振动特性 / 参数可行域

Key words

HTS maglev / Multi-scale method / Vibration characteristics / Parameter feasible region

引用本文

导出引用
张明亮1,2,杨新梦1,刘丽茹1,李明远1. 高温超导磁悬浮列车振动特性分析及其参数可行域研究[J]. 振动与冲击, 2023, 42(18): 30-38
ZHANG Mingliang1,2,YANG Xinmeng1,LIU Liru1,LI Mingyuan1. Vibration characteristics and parameter feasible region of a type of HTS maglev[J]. Journal of Vibration and Shock, 2023, 42(18): 30-38

参考文献

[1]  孙友刚, 谢久明, 徐俊起,等.低速磁浮列车磁悬浮系统仿真平台设计与控制 [J]. 机械设计, 2018, 35(5): 6.
SUN Yong-gang, XIE Jiu-ming, XU Jun-qi, et al. Simulation platform design and control research for magnetic suspension systems of low-speed maglev train [ J ]. Mechanical Design, 2018, 35 ( 5 ) : 6.
[2]  HA H, PARK J, PARK K S. Advanced numerical analysis for vibration characteristics and ride comfort of ultra-high-speed maglev train [J]. Microsystem Technologies, 2020, 26(1): 183-93.
[3]  李晓琳, 阎锋. 日本磁悬浮列车创造600km/h速度纪录 [J]. 国外铁道车辆, 2016, 53(6): 5.
LI Xiao-lin, YAN Feng. Japanese maglev train creates a 600km / h speed record [ J ]. Foreign Railway Vehicles, 2016, 53 ( 6 ) : 5.
[4]  DENG, Z., WANG, et al. An efficient and economical way to enhance the performance of present HTS Maglev systems by utilizing the anisotropy property of bulk superconductors [J]. Superconductor Science & Technology, 2013, 26(2): 025001.
[5]  DENG Z, WANG J, ZHENG J, et al. High-efficiency and low-cost permanent magnet guideway consideration for high-Tc superconducting Maglev vehicle practical application [J]. Superconductor Science & Technology, 2008, 21(11): 115018.
[6]  DENG Z, ZHANG W, ZHENG J, et al. A High-Temperature Superconducting Maglev Ring Test Line Developed in Chengdu, China [J]. IEEE Transactions on Applied Superconductivity, 2016, 26(6): 1-8.
[7]  伊建辉, 孟范鹏, 姜衍猛,等. 高温超导磁悬浮列车静态悬浮特性研究 [J]. 低温工程, 2022, 41(6): 56-61.
YIN Jian-hui, MENG Fan-peng, JIANG Yan-meng, et al. Study on static suspension characteristics of high temperature superconducting maglev train [ J ]. Cryogenic, 2022, 41 ( 6 ) : 56-61.
[8] 肖乾, 许旭, 陈光圆. 磁悬浮列车动力学研究方法综述 [J]. 华东交通大学学报, 2022, 36(1): 25.XIAO Qian, XU Xu, CHEN Guang-yuan. Review on the dynamics research of maglev train [ J ]. Journal of East China Jiaotong University, 2022,36 ( 1 ) : 25.
[9] 王家素, 王素玉. 高温超导磁悬浮列车研究综述 [J]. 电气工程学报, 2015, 10(11): 10.
WANG Jia-su, WANG Su-yu. High temperature superconducting maglev train [ J ].Journal of Electrical Engineering, 2015,10 ( 11 ) : 10.
[10] 马光同, 杨文姣, 王志涛,等. 超导磁浮交通研究进展 [J]. 华南理工大学学报:自然科学版, 2019, 47(7): 8.
MA Guang-tong, YANG Wen-jiao, WANG Zhi-tao, et al. Research development of superconducting maglev transportation [ J ]. Journal of South China University of Technology : Natural Science Edition, 2019, 47 ( 7 ) : 8.
[11] 陈楠, 陈洋, 孙睿雪,等. 高温超导-永磁混合悬浮车基本系统的理论模型与实验 [J]. 科学通报, 2020, 65(9): 9.
CHEN Nan, CHEN Yang, SUN Rui-xue, et al. Theoretical model and experiment of the hybrid Maglev vehicle employing high temperature superconducting magnetic levitation and permanent magnetic levitation [ J ]. Chinese Science Bulletin , 2020, 65 ( 9 ) : 9.
[12] 李家志, 索红莉, 王毅,等.  超导材料在磁悬浮列车上的应用进展(上)[J]. 铁道技术监督, 2020, 48(3): 38-44.
LI Jia-zhi, SUO Hong-li, WANG Yi, et al. application progress of superconducting materials in maglev train ( I ) [ J ]. Railway Technical Supervision, 2020, 48 ( 3 ) : 38 – 44.
[13] 李家志, 索红莉, 王毅,等.  超导材料在磁悬浮列车上的应用进展(下)[J]. 铁道技术监督, 2020, 48(4): 51-57.
Li Jiazhi, Suo Hong-li, Wang Yi, et al. Application progress of superconducting materials in maglev trains ( II ) [ J ]. Railway Technical Supervision, 2020, 48 ( 4 ) : 51-57.
[14] 李杨, 杨文将, 叶茂,等.  高温超导悬浮装置的冷却结构设计与试验[J]. 中国科技论文, 2017, 12(22): 2569-2574.
LI Yang, YANG Wen-jiang, Ye Mao, et al. Design and experimental research of cooling structure used in high temperature superconductive magnetic levitation device [ J ]. China Sciencepaper, 2017,12 ( 22 ) : 2569-2574.
[15] 高策,杨乐平,朱彦伟,张元文. 面向在轨重构的磁通钉扎接口特性分析[C]//.第36届中国控制会议论文集(D).,2017:790-795.
GAO Ce, YANG Le-ping, ZHU Yan-wei, ZHANG Yuan-wen. Characteristic analysis of flux pinning interface for on-orbit reconstruction [C]//. The 36th China Control Conference Papers ( D ). 2017 : 790-795.
[16] ZHANG M, HAN Y, GUO X, et al. The connection characteristics of flux pinned docking interface [J]. Journal of Applied Physics, 2017, 121(11): 113907.1.
[17] ZHANG M, YE M, LIU P, et al. The Demonstrations of Flux Pinning for Space Docking of CubeSat Sized Spacecraft in Simulated Microgravity Conditions [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(6): 1-16.
[18] 韩乐, 李婧, 李想,等. 直线电机用高温超导块材磁体作用力—磁场特性分析 [J]. 低温物理学报, 2019, 41(1): 7.
HAN Le, LI Jing, LI Xiang, et al. Analysis on the force-magnetic field characteristics of high-temperature superconducting bulk magnets in linear motors [ J ]. Chinese Journal of Low Temperature Physics, 2019, 41 ( 1 ) : 7.
[19] 余志强, 孙晓云, 邱清泉,等. 电机外置式径向型高温超导飞轮储能系统样机悬浮测试及旋转实验 [J]. 电工技术学报, 2019, 34(10): 10.
YU Zhi-qiang,  SUN Xiao-yun, QIU Qing-quan, et al. Levitation test and rotation experiment of radial-type superconducting flywheel energy storage system prototype with external motor[ J ]. Transactions of China Electrotechnical Society 2019, 34 ( 10 ) : 10.
[20] 周艳秋, 余志强. 径向型高温超导轴承悬浮特性的有限元分析 [J]. 城市轨道交通研究, 2019, 22(8): 5.
ZHOU Yan-qiu, YU Zhi-qiang. Finite element analysis of levitation characteristics for radial-type superconducting bearing [ J ]. Urban Mass Transit, 2019, 22 ( 8 ) : 5.
[21] 蒋冬辉.永磁轨道上块状高温超导体的振动特性研究[博士论文].成都:西南交通大学,2014.
JIANG Dong-hui. The vibration characteristics of massive high temperature superconductors on permanent magnet track [ doctoral dissertation ].Chengdu : Southwest Jiaotong University, 2014.
[22] 武倩倩, 陈尚, 陈永强,等. 磁悬浮隔振系统非线性动力学建模与仿真 [J]. 振动与冲击, 2022, 34(20): 161.
WU Qian-qian, CHEN Shang, CHEN Yong-qiang, et al. Nonlinear dynamics modeling and simulation of maglev vibration isolation system [ J ]. Journal of Vibration and Shock, 2022, 34 ( 20 ) : 161.
[23] 江东, 张静, 杨嘉祥. 磁悬浮振动测试系统的混沌运动 [J]. 仪器仪表学报, 2014, 35(10): 7.
JIANG dong, ZHANG Jing, YANG Jia-xiang. Research on chaotic movement of maglev vibration test system [ J ]. Chinese Journal of Scientific Instrument, 2014, 35 ( 10 ) : 7.
[24] CHE T, GOU Y F, ZHENG J, et al. Enhanced Maglev Performance by Field Cooling for HTS Maglev System in Curve Negotiation [J]. Journal of Superconductivity & Novel Magnetism, 2014, 27(10): 2211-6.
[25] ZHANG M, SUN G, LIU P, et al. Research on Force Characteristics and Running Performance of Novel Type High-Temperature Superconductor Magnetic Levitation Vehicle [J]. Journal of Superconductivity and Novel Magnetism, 2022, 35(3): 635-46.
[26] 张明亮,李明远,刘鹏飞,等.面向高温超导钉扎磁悬浮列车悬浮特性研究[J].中国机械工程:1-8[2022-03-23网络首发] ZHANG Ming-liang, LI Ming-yuan, LIU Peng-fei, et al. Study on levitation characteristics of high temperature superconducting pinned maglev train [ J ].China Mechanical Engineering : 1-8 [ 2022-05-07 ].
[27]  李晓龙, 龙鑫林, 翟明达. 永磁电磁型低速磁悬浮车轨耦合振动抑制新方法 [J]. 振动工程学报, 2016, 29(4): 7.
LI Xiao-long, LONG Xin-lin, ZHAI Ming-da. New method to suppress tracks coupling vibration in PEMS low speed maglev train [ J ]. Journal of Vibration Engineering, 2016, 29 ( 4 ) : 7.
[28] 张兴义, 周军, 周又和. 高温超导体时效与记忆效应实验研究 [J]. 实验力学, 2013, 28(5): 572.
ZHANG Xing-yi, ZHOU Jun, ZHOU You-he. Experimental investigation on aging and memory effect of high-temperature superconductor bulks [ J ]. Journal of Experimental Mechanics, 2013, 28 ( 5 ) : 572.
[29] 胡海岩. 应用非线性动力学 [M]. 北京:航空工业出版社, 2000:57-58
HU Hai-yan. Applied Nonlinear Dynamics [ M ]. Beijing : Aviation Industry Press, 2000:57-58
[30] 李航, 申永军, 李向红,等. Duffing系统的主-亚谐联合共振 [J]. 力学学报, 2020, 52(2): 514.
LI Hang, SHEN Yong-jun, LI Xiang-hong, et al. Primary and subharmonic simultaneous resonance of duffing oscillator [ J ]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 ( 2 ) : 514.
[31] 李航, 申永军, 杨绍普,等. Duffing系统的主-超谐联合共振 [J]. 物理学报, 2021, 70(4): 040502.
LI Hang, SHEN Yong-jun, YANG Shao-pu, et al. Simultaneous primary and super-harmonic resonance of Duffing oscillator [ J ]. Acta Physica Sinica, 2021, 70 ( 4 ) : 040502.

PDF(2985 KB)

Accesses

Citation

Detail

段落导航
相关文章

/