基于CFD-DEM耦合的埋地输气管道泄漏声场分析

王强1,薛生1,2,郑晓亮3,张磊1,谢晓贤1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (18) : 321-331.

PDF(2786 KB)
PDF(2786 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (18) : 321-331.
论文

基于CFD-DEM耦合的埋地输气管道泄漏声场分析

  • 王强1,薛生1,2,郑晓亮3,张磊1,谢晓贤1
作者信息 +

Analysis of the acoustic field induced by buried gas pipe leakage using the coupled method of CFD-DEM

  • WANG Qiang1, XUE Sheng1,2, ZHENG Xiaoliang3, ZHANG Lei1, XIE Xiaoxian1
Author information +
文章历史 +

摘要

埋地输气管道泄漏声场产生机理和特性尚不明确,制约着管道泄漏声波检测技术的发展。本文使用计算流体力学(Computational Fluid Dynamic, CFD)与离散元(Discrete Element Method, DEM)耦合方法分析管道泄漏的气固作用,结合宽频噪声源模型和阵列成像技术进行泄漏声场分析和测试。数值模拟结果表明,泄漏高速喷流冲击土壤致使泄漏孔外部形成空洞,并在泄漏孔和空洞内产生四极子声源。土壤阻隔导致流体速度和湍流动能减小,能量由流体传递至土壤颗粒,土壤颗粒运动速度达到了10 m/s。1 MPa管道内压下,泄漏喷流的最大流速超过1000 m/s,由此产生的气动噪声声压级达到了180 dB。相较于其他方向,泄漏孔向上时空洞更大,流场和声场能量更强。声场成像结果证明泄漏孔与声源重合,基于地面阵列的泄漏检测具有可行性。

Abstract

The generation mechanism and characteristics of the acoustic field induced by buried gas pipe leaks are not clear, which restricts the development of acoustic-based pipe leak detection. To address this, a coupling method using computational fluid dynamic (CFD) and discrete element method (DEM) was employed to analyze the fluid-solid interaction of buried pipe leaks. The broadband noise source model and array imaging technique were combined to analyze and test the leak-induced acoustic field. The results of numerical simulation show that the leak-induced high-speed jet scours the soil and generates a cavity out of the leak hole, with the quadrupole acoustic source being generated in the leak hole and soil cavity. Flow speed and turbulence energy were found to be reduced by the block of soil. Energy is transferred from the fluid to the soil particles, and the motion speed of the soil particles reaches 10 m/s. Under the 1-MPa internal pressure of pipe, the maximum flow speed of leak jet exceeds 1000 m/s and the generated aeroacoustics have a sound pressure level of over 180 dB. Comparing with the other directions, when the leak hole was upward the cavity is enlarged and the energy of flow and acoustic fields is enhanced. The imaging of acoustic field verified that the acoustic source is coincided with the leak. Leak detection using ground array is feasible.

关键词

埋地管道泄漏 / 流固耦合 / 气动声学 / 声场成像 / 颗粒运动

Key words

buried pipe leak / fluid-solid coupling / aeroacoustics / acoustic field imaging / particle motion

引用本文

导出引用
王强1,薛生1,2,郑晓亮3,张磊1,谢晓贤1. 基于CFD-DEM耦合的埋地输气管道泄漏声场分析[J]. 振动与冲击, 2023, 42(18): 321-331
WANG Qiang1, XUE Sheng1,2, ZHENG Xiaoliang3, ZHANG Lei1, XIE Xiaoxian1. Analysis of the acoustic field induced by buried gas pipe leakage using the coupled method of CFD-DEM[J]. Journal of Vibration and Shock, 2023, 42(18): 321-331

参考文献

[1] MERIBOUT M, KHEZZAR L, AZZI A, et al. Leak detection systems in oil and gas fields: Present trends and future prospects [J]. Flow Measurement and Instrumentation, 2020, 75, 101772.
[2] HU Z Y, TARIQ S, ZAYED T. A comprehensive review of acoustic based leak localization method in pressurized pipelines [J]. Mechanical Systems and Signal Processing, 2021, 161, 107994.
[3] 方丽萍, 殷布泽, 孟令雅, 等. 气液混输管道段塞流泄漏声波产生机理研究[J]. 振动与冲击, 2022, 41(12): 229-237.
FANG Li-ping, YIN Bu-ze, MENG Ling-ya, et al. Leak-acoustics generation mechanism for gas-liquid pipeline slug flow [J]. Journal of Vibration and Shock, 2022, 41(12): 229-237.
[4] 刘翠伟, 李玉星, 王武昌, 等. 输气管道泄漏音波产生机理研究[J]. 振动与冲击, 2013, 32(07): 17-23.
LIU Cui-wei, LI Yu-xing, WANG Wu-chang, et al. Leak-acoustics generation mechanism for natural gas pipelines [J]. Journal of Vibration and Shock, 2013, 32(07): 17-23.
[5] LIU C, LI Y, MENG L, et al. Computational fluid dynamic simulation of pressure perturbations generation for gas pipelines leakage [J]. Computers & Fluids, 2015, 119: 213-223.
[6] CURLE N. The influence of solid boundaries upon aerodynamic sound [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1955, 231(1187): 505-514.
[7] FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion, Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321-342.
[8] MOSTAFAPOUR A, DAVOUDI S. Analysis of leakage in high pressure pipe using acoustic emission method, Applied Acoustics, 2013, 74(3): 335-342.
[9] MOSTAFAPOUR A, DAVOODI S. A theoretical and experimental study on acoustic signals caused by leakage in buried gas-filled pipe, Applied Acoustics, 2015, 87: 1-8.
[10] EBRAHIMI-MOGHADAM A, FARZANEH-GORD M, DEYMI-DASHTEBAYAZ M. Correlations for estimating natural gas leakage from above-ground and buried urban distribution pipelines [J]. Journal of Natural Gas Science and Engineering, 2016, 34: 185-196.
[11] GHASEMZADEH H, ABOUNOURI A A. Effect of subsurface hydrological properties on velocity and attenuation of compressional and shear wave in fluid-saturated viscoelastic porous media [J]. Journal of Hydrology, 2012, 460: 110-116.
[12] GHASEMZADEH H, ABOUNOURI A A, Compressional and shear wave intrinsic attenuation and velocity in partially saturated soils [J]. Soil Dynamics and Earthquake Engineering, 2013, 51: 1-8.
[13] 丁卫, 吴文雯, 王驰, 等. 用非饱和三相孔弹模型研究浅层土壤中地震波的传播特性[J]. 物理学报, 2014, 63(22): 204-212.
DING Wei, WU Wen-wen, WANG Chi, et al. Propagation characteristics of seismic waves in shallowsoil with the unsaturated three-phase poroelastic mode [J]. Acta Physica Sinica, 2014, 63(22): 204-212.
[14] MUGGLETON J M, HUNT R, RUSTIGHI E, et al. Gas pipeline leak noise measurements using optical fibre distributed acoustic sensing [J]. Journal of Natural Gas Science and Engineering, 2020, 78, 103293.
[15] 刘巨保, 王明, 王雪飞, 等. 颗粒群碰撞搜索及CFD-DEM耦合分域求解的推进算法研究[J]. 力学学报, 2021, 53(6): 1569-1585.
LIU Ju-bao, WANG Ming, WANG Xue-fei, et al. Research on particle swarm collision search and ad-vancement algorithm for CFD-DEM coupling domain solving [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1569-1585.
[16] SHARMA K, MALLICK S S, MITTAL A. A study of energy loss due to particle to particle and wall collisions during fluidized dense-phase pneumatic transport [J]. Powder Technology, 2020, 362: 707-716.
[17] BERARD A, PATIENCE G S, BLAIS B. Experimental methods in chemical engineering: Unresolved CFD-DEM [J]. Canadian Journal of Chemical Engineering, 2020, 98(2): 424-440.
[18] 张聚臣, 李世成, 刘洋, 等. 基于Realizable k-ε模型的叶盘通道电解加工多场耦合分析[J]. 航空学报, 2022, 43(4): 361-372.
ZHANG Ju-chen, LIU Shi-cheng, LIU Yang, et al. Multi-physical field analysis of tunnel ECM employed Realizable k-ε model [J]. Acta Aeronautica et Astronautica Scinica, 2022, 43(4): 361-372.
[19] CHENG K, ZHU J, QIAN F, et al. CFD–DEM simulation of particle deposition characteristics of pleated air filter media based on porous media model [J]. Particuology. 2023, 72: 37-48.
[20] HU J, XU G, SHI Y, et al. A numerical simulation investigation of the influence of rotor wake on sediment particles by computational fluid dynamics coupling discrete element method [J]. Aerospace Science and Technology, 2020, 105, 106046.
[21] JEFERSON T P, EDUARDO L C. Simulation of the thermomechanical behavior of discrete particles in the laser directed energy deposition process [J]. Powder Technology, 2022, 405, 117568.
[22] NOSEWICZ S, ROJEK J, CHMIELEWSKI M, et al. Application of the hertz formulation in the discrete element model of pressure-assisted sintering [J]. Granular matter, 2017, 19(1): 16.1-16.8.
[23] TSUJI Y, TANAKA T, ISHIDA T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe [J]. Powder Technology, 1992, 71(3): 239-250.
[24] HORABIK J, MOLENDA M. Parameters and contact models for dem simulations of agricultural granular materials: a review [J]. Biosystems Engineering, 2016, 147: 206-225.
[25] WANG W, LI Z, LIU M, et al. Influence of water injection on broadband noise and hydrodynamic performance for a NACA66 (MOD) hydrofoil under cloud cavitation condition [J]. Applied Ocean Research, 2021, 115, 102858.
[26] RIBNER H S. The generation of sound by turbulent jets [J]. Advances in Applied Mechanics, 1964, 8: 103-182.
[27] GOLDSTEIN M. A generalized acoustic analogy [J]. Journal of Fluid Mechanics, 2003, 488: 315-333.
[28] ZHANG W, WANG J, WU S. Robust Capon beamforming against large DOA mismatch [J]. Signal Processing, 2013, 93(4): 804-810.
[29] MAVRYCHEV E A, ERMOLAYEV V T, FLAKSMAN A G. Robust Capon-based direction-of-arrival estimators in partly calibrated sensor array [J]. Signal Processing, 2013, 93(12): 3459-3465.
[30] CHU Z, YANG Y. Comparison of deconvolution methods for the visualization of acoustic sources based on cross-spectral imaging function beamforming [J]. Mechanical Systems and Signal Processing, 2014, 48(1–2): 404-422.

PDF(2786 KB)

338

Accesses

0

Citation

Detail

段落导航
相关文章

/