移动凸轮变阻尼隔振装置动态性能研究

王兰1,邢海军1,吕书锋2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 110-116.

PDF(2063 KB)
PDF(2063 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 110-116.
论文

移动凸轮变阻尼隔振装置动态性能研究

  • 王兰1,邢海军1,吕书锋2
作者信息 +

Dynamic performance of translating cam variable damping vibration isolation device

  • WANG Lan1, XING Haijun1, L Shufeng2
Author information +
文章历史 +

摘要

针对线性隔振器在共振区需要大阻尼才能抑制共振峰,但在高频区大阻尼不利于隔振的问题,提出了基于移动凸轮的变阻尼隔振装置,该装置主要由水平对称布置的线性阻尼器及移动凸轮组成。将该变阻尼装置用于消极隔振系统,推导了变阻尼装置的等效阻尼系数,建立了隔振系统的动力学方程,采用谐波平衡法得到了方程的近似解析解;通过盛金法及数值仿真得到了其位移传递率曲线,分析了主要参数对系统隔振性能的影响。与传统的线性隔振器相比,选取合适的设计参数的变阻尼隔振系统,能更有效地抑制共振峰,同时还可以在中、高频区取得很好的隔振效果,最后以车辆为例,验证了前述结论。

Abstract

The linear vibration isolator requires large damping force to attenuate the resonance, but large damping force is unfavorable for vibration isolation in the high frequency region. In view of this, a variable damping isolator with moving cam was proposed, which was mainly comprised of translating cam with a pair of rollers arranged symmetrically and horizontally and two linear dampers. Firstly the equivalent damping coefficient of the variable damping device was derived from mechanical equilibrium. The dynamic equation of the variable damping system was established under pavement harmonic excitation, and the analytical solution to the system was obtained using the harmonic equilibrium method. Secondly, the transmissibility curves of numerical simulation results of the variable damping isolation system were illustrated and analyzed by compared with the linear damping isolation system. If the appropriate parameters of the variable damping isolator are selected in the design, its effects on attenuating the resonance will be superior to that of the corresponding linear damping isolator, meanwhile, its vibration isolation effect will be slightly better than that of the corresponding linear damping isolator in the region of high frequency ratio. Finally, the aforementioned conclusion was verified by applying the variable damping isolator to transport vehicles.

关键词

移动凸轮 / 变阻尼隔振 / 共振 / 频率比 / 位移传递率

Key words

translating cam / variable damping vibration isolation / resonance / frequency ratio / transmissibility

引用本文

导出引用
王兰1,邢海军1,吕书锋2. 移动凸轮变阻尼隔振装置动态性能研究[J]. 振动与冲击, 2023, 42(19): 110-116
WANG Lan1, XING Haijun1, L Shufeng2. Dynamic performance of translating cam variable damping vibration isolation device[J]. Journal of Vibration and Shock, 2023, 42(19): 110-116

参考文献

[1] 郑兆昌. 机械振动(上)[M]. 机械工业出版社,北京:1980.
Zheng Zhaochang. Mechanical vibration(first volume) [M]. Machinery Industry Press, Beijing, 1980.
[2] 戴德沛. 阻尼减振降噪技术[M]. 西安:西安交通大学出版社,1986.
Dai Peide. Damping technology for vibration and noise control [M]. Xi’an: Xi'an Jiaotong University Press, 1986.
[3] E.I. Rivin. Passive Vibration Isolation [M]. ASME Press, New York, 2001.
[4] Ravindra B, Mallik A. Hard Duffing-type vibration isolator with combined coulomb and viscous damping [J]. International Journal of Non-linear Mechanics, 1993, 28(4): 427-440.
[5] Ravindra B, Mallik A. Performance of non-linear vibration isolators under harmonic excitation. Journal of Sound and Vibration [J], 1994, 170(3): 325-337.
[6] 贺辉,谭平,刘彦辉,等. 圆形高耸结构两级变阻尼TMD风振控制[J]. 振动工程学报,2020.33(3): 503-508.
HE Hui, TAN Ping, LIU Yan-hui, et al. Wind-induced vibration control of circular section high-rise structures employing TMD with two-stage damping level [J]. Journal of Vibration Engineering. 2020, 33(3): 503-508.   
[7] GONG S M, ZHOU Y. Experimental study and numerical simulation on a new type of viscoelastic damper with strong nonlinear characteristics [J]. Structural Control and Health Monitoring, 2017, 24(4): e1897.1-e1897.18.
[8] 黄宙,李宏男,付兴. 自复位放大位移型SMA阻尼器优化设计方法研究[J]. 工程力学,2019,36(06):202-210.
HUANG Zhou, LI Hong-nan, FU Xing. Optimum design of a re-centering deformation-amplified SMA damper [J]. Engineering Mechanics. 2019, 36(06): 202-210.
[9] Hong-Nan Li, Zhou Huang, Xing Fu, et al. A re-centering deformation-amplified shape memory alloy damper for mitigating seismic response of building structures [J]. Structural Control and Health Monitoring, 2018, 25(9): e2233.1-e2233.20.
[10] Hong-Nan Li, Zhou Huang, Xing Fu. Study on the performance of a gear-driven rotation-amplified rubber viscoelastic damper and its vibration control for structures [J]. Structural Control and Health Monitoring, 2020, 27(11): e2617.
[11] Rabinow J. The magnetic fluid clutch [J]. AIEE Transactions, 1948, 671308-671315.
[12] Pradeep P Phulé. Magnetorheological (MR) fluids: Principles and applications [J]. Smart Materials Bulletin, 2001, 2001(2): 7-10.
[13] Dong Shufang, Lu Ke-Qian, Sun, J.Q., et al. A prototype rehabilitation device with variable resistance and joint motion control [J]. Medical Engineering & Physics, 2006, 28(4): 348-355.
[14] 周云,谭平. 磁流变阻尼控制理论与技术[M]. 北京:科学出版社,2007.
ZHOU Yun, TAN Ping. Theory and technology of magnetorheological damping control [M]. Beijing: Science Press, 2007. 
[15] S M MOUSAVI-BIDELEH, V. BERBYUK. Multi-objective optimization of bogie suspension to boost speed on curves [J]. Vehicle System Dynamics, 2016, 54(1): 1-27.
[16] Wang S, Liu Y, Li D. A ferrofluid- based planar damper with magnetic spring [J]. Journal of magnetics, 2018, 23(3): 405-408.
[17] Jiao Xiaolei, Zhao Yang, Ma Wenlai. Nonlinear dynamic characteristics of a micro-vibration fluid viscous damper [J]. Nonlinear Dynamics, 2018, 92(3): 1167-1184.
[18] 金天贺,刘志明,任尊松,等. 高速列车半主动悬挂可变刚度和阻尼减振器适应性研究[J]. 振动工程学报, 2020,33(04):772-783.
JIN Tian-he, LIU Zhi-ming, REN Zun-song, et al. Adaptability of variable stiffness and damping shock absorber for semi-active suspension of high speed train [J]. Journal of Vibration Engineering, 2020, 33(04): 772-783.
[19] Jianqiang YU, Xiaomin DONG, Song QI, et al. Development of a magnetorheological isolator with variable damping and variable stiffness for broadband vibration suppression [J]. Smart Materials and Structures, 2021, 30(2), PP025023.
[20] Z.K.Peng,n, Z.Q.Lang , L.Zhao , et al. The force transmissibility of MDOF structures with a non-linear viscous damping device [J]. International Journal of Non-Linear Mechanics, 2011, 46(10): 1305–1314.
[21] Z.K.Peng, G.Meng, Z.Q.Lang, et al. Study of the effects of cubic nonlinear damping on vibration isolations using Harmonic Balance Method [J]. International Journal of Non-Linear Mechanics, 2012, 47(10): 1073-1080.
[22] 刘兴天,陈树海,王嘉登,等. 几何非线性摩擦阻尼隔振系统动力学行为研究[J]. 力学学报,2019,51(02):371-379.
Liu Xingtian, Chen Shuhai, Wang Jiadeng, et al. Analysis of the dynamic behavior and performance of a vibration isolation system with geometric nonlinear friction damping [J]. Chinese Journal of Theoretical and Applied Mechanics. 2019, 51(02): 371-379.
[23] Van Tan Vu, Olivier Sename, Luc Dugard, et al. Active anti-roll bar control using electronic servo valve hydraulic damper on single unit heavy vehicle [J]. IFAC-Papers On Line, 2016, 49(11): 418-425.
[24] D D DOMENICO, G. RICCIARDI. Earthquake protection of structures with nonlinear viscous dampers optimized through an energy-based stochastic approach [J]. Engineering Structures. 2019, 179(15): 523-539.  
[25] 王琳,周盼,夏孟龙. 基于AMESim的船用液压阻尼器结构优化与仿真[J]. 液压与气动,2018,(06):94-98.
WANG Lin, ZHOU Pan, XIA Meng-long. Structure optimization and simulation based on AMESim for hydraulic damper [J]. Chinese Hydraulics & Pneumatics, 2018,( 6): 94-98.
[26] 余慕春,李炳蔚,牛智玲,等. 基于剪切增稠液体的变阻尼隔振器动力学特性研究[J]. 装备环境工程,2019,16(08):33-38.
YU Mu-chun, LI Bing-wei, NIU Zhi-ling, XUE Wei-kang1, ZHAO Peng. Dynamical Properties of Variable-damped Vibration Isolator Based on Shear Thickening Fluid [J]. Equipment Environmental Engineering, 2019, 16(08): 33-38.
[27] 闫明,田浩男,刘海超. 孔隙式隔振系统非线性阻尼特性[J]. 沈阳工业大学学报,2020,42(06):648-653.
YAN Ming, TIAN Hao-nan,LIU Hai-chao. Nonlinear damping characteristics of pore-type vibration isolation system [J]. Journal of Shenyang University of Technology. 2020, 42(6): 648-653.
[28] 赵祥,高永苗,周铁钢,等. 新型变阻尼式TMD的力学性能试验研究[J]. 西安建筑科技大学学报(自然科学版),2020,52(06):797-805.
ZHAO Xiang, GAO Yong-miao, ZHOU Tie-gang, et al. Mechanical performance test and parameter optimization of a new variable damping TMD [J]. Journal of Xi’an University of   Architecture & Technology(Natural Science Edition), 2020, 52(06): 797-805. 
[29] 付伟庆,李茂,张春巍. 被动变阻尼耗能装置的设计与性能试验研究[J]. 振动工程学报,2020,33(05):869-876.
FU Wei-qing, LI Mao, ZHANG Chu-wei. Design and performance experiment on passive variable damping energy dissipation device [J]. Journal of Vibration Engineering, 2020, 33(05): 869-876.
[30] 付伟庆,李茂,李通,等. 多阶梯被动变阻尼装置高层建筑风振控制性能化设计方法[J]. 地震工程与工程振动,2021,41(05):47-55.
FU Wei-qing , LI Mao, LI Tong, et al. Design, performance test and structural wind vibration control analysis of multi-stage variable damping device[J]. Engineering Mechanics, 2021, 41(05): 47-55.
[31] 蒲华燕,何文元,孙翊等. 基于频变阻尼特性的四参数隔振系统建模与参数分析[J]. 振动与冲击. 2021,40(24):128-135.
PU Huayan, HE Wenyuan, SUN Yi, et al. Modeling and parameter analysis of a four-parameter isolation system based on frequency-dependent damping characteristics [J]. Journal of vibration and shock, 2021, 40(24): 128-135.
[32] Nayfeh A H, Mook D T. Nonlinear oscillations [M]. John Wiley & Sons, New York, 1979.
[33] 陈予恕. 非线性振动 [M]. 高等教育出版社,北京,2002.
Chen Yushu. Nonlinear Vibration [M]. Higher Education Press. Beijing, 2002.

PDF(2063 KB)

Accesses

Citation

Detail

段落导航
相关文章

/