双向拉伸Hopkinson斜杆加载方法的探索与研究

王思聪1,南海鹏1,赵思晗2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 117-124.

PDF(2915 KB)
PDF(2915 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 117-124.
论文

双向拉伸Hopkinson斜杆加载方法的探索与研究

  • 王思聪1,南海鹏1,赵思晗2
作者信息 +

Exploration and study on biaxial tensile Hopkinson oblique bar loading method

  • WANG Sicong1, NAN Haipeng1, ZHAO Sihan2
Author information +
文章历史 +

摘要

为了实现对材料的双轴同步拉伸加载,现已有通过双向电磁脉冲驱动,以及对称双曲杆产生的双向拉伸波的方式,对试样进行双向动态拉伸加载。本文试图探索一种结构简单,造价低廉,加工难度小的双向拉伸Hopkinson斜杆加载装置。为了理解斜杆对弹性压缩波传播规律的影响,对斜杆撞击进行了ABAQUS有限元仿真计算和理想验证试验分析。结果发现,斜杆夹角在低于60°和高于90°时,方波平台段出现前高后低的情形,导致波形失真,同时在夹角大于105°之后,失真更为严重。本文还对多轴加载的同步性问题和双轴加载的数据获取进行了讨论和分析。结果表明,加载波的不同步会导致试样上加载阶跃,从而加载应变率阶跃,这会影响率敏感材料的试验准确性。为了验证该装置的有效性,搭建验证装置对双向拉伸杆上的拉伸波形进行试验验证,取得了较好的试验结果。

Abstract

In order to realize biaxial synchronous tensile loading of materials, biaxial dynamic tensile loading of the sample has been carried out by means of biaxial electromagnetic pulse drive and biaxial tensile wave generated by symmetric double curved bar. This paper attempts to explore a kind of biaxial stretching Hopkinson oblique bar loading device with simple structure, low cost and low processing difficulty. In order to understand the effect of oblique bar Angle on waveform, ABAQUS finite element simulation calculation and ideal verification experimental were carried out on the impact of inclined bar. The results show that the square wave platform segment is high in the front and low in the back when the angle between the oblique bar is outside 60° to 90°, which result in waveform distortion, and the waveform distortion is more serious when the angle is more than 105°. The synchronization of multiaxial loading and the data acquisition of biaxial loading are also discussed and analyzed in this paper. The results show that the step loading and strain rate step loading will be caused by the asynchrony phenomenon of loading wave, which will affect the test accuracy of rate-sensitive materials. In order to verify the effectiveness of the device, a verification device was built to verify the tension waveform on the biaxial tension bar, and good test results were obtained.

关键词

Hopkinson杆 / 传播规律 / 同步性 / 双轴拉伸。

Key words

Hopkinson bar / Propagation law / Synchronism / Biaxial tension.

引用本文

导出引用
王思聪1,南海鹏1,赵思晗2. 双向拉伸Hopkinson斜杆加载方法的探索与研究[J]. 振动与冲击, 2023, 42(19): 117-124
WANG Sicong1, NAN Haipeng1, ZHAO Sihan2. Exploration and study on biaxial tensile Hopkinson oblique bar loading method[J]. Journal of Vibration and Shock, 2023, 42(19): 117-124

参考文献

[1]  Hannon A , Tiernan P . A review of planar biaxial tensile test systems for sheet metal[J]. Journal of Materials Processing Technology, 2008, 198(1-3):1-13.
[2]  Yuan Z , Shen Q , Liu H , et al. Damage behavior and mechanism of SiCp/Al composites under biaxial tension[J]. Materials Characterization, 2021, 180(5-6):111402.
[3]  Chen G , Feng S , Zhang X , et al. Deformation mechanisms of zirconium alloys under biaxial tension at room temperature[J]. Materials Letters, 2020, 271:127773.
[4]  Zou D , Li S , He J , et al. Failure Investigation for QP Steel Sheets under uniaxial and Equal-Biaxial Tension Conditions[J]. Journal of Physics Conference, 2016, 734(3):032017.
[5]  赵思晗, 郭伟国, 王凡,等. Hopkinson曲杆型双向拉伸加载设计探讨[J]. 爆炸与冲击, 2021, 41(11):10.
ZHAO Sihan , Guo Weiguo , WANG Fan , et al. Research on a bidirectional bending Hopkinson tension test method[J] Explosion and Shock Waves, 2021, 41(11):10.
[6]  Nie H , Tao S , Shi X , et al. Symmetric split Hopkinson compression and tension tests using synchronized electromagnetic stress pulse generators[J]. International Journal of Impact Engineering, 2018, 122(DEC.):73-82.
[7]  惠旭龙, 牟让科, 白春玉,等. TC4钛合金动态力学性能及本构模型研究[J]. 振动与冲击, 2016, 35(22):8.
HUI Xulong , MU Rangke , BAI Chunyu , et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy[J]. Journal of Vibration and Shock, 2016, 35(22):8.
[8] 吴海军, 王可慧, 李明,等. 船用921A钢高温,高应变率下动态本构模型研究[J]. 振动与冲击, 2022, 41(20):8.
WU Haijun , WANG Kehui , LI Ming , et al. A study on a dynamic constitutive model of 921A shipbuilding steel at high temperature and high strain rate[J]. Journal of Vibration and Shock, 2022, 41(20):8.
[9]  Wang Z J , Zheng L H , Wang Z . Characterization of forming limits at fracture for aluminum alloy 6K21-T4 sheets in non-linear strain paths using a biaxial tension/shear loading test[J]. International Journal of Mechanical Sciences, 2020, 184(10):105672.
[10]  刘东升, 史同亚, 谢普初,等. 滑轨导向式静/动态双轴拉伸实验技术[J]. 爆炸与冲击, 2021, 41(6):98-110.
LIU Dongsheng , SHI Tongya , XIE Puchu , et al. Rail-guided static/dynamic biaxial tensile test technique[J]. Explosion and Shock Waves, 2021, 41(6):98-110.
[11]  Tsai H K , Lin Y W , Chen F K , et al. Design of an Experimental Device for Biaxial Tension Tests Used in a Uniaxial Test Machine[J]. Key Engineering Materials, 2013, 554-557(1):174-181.
[12]  聂海亮, 石霄鹏, 陈春杨,等. 单轴双向加载分离式霍普金森压杆的数据处理方法[J]. 爆炸与冲击, 2018, 38(3):517-524.
NIE Hailiang , SHI Xiaopeng , CHEN Chunyang , et al. Data processing method for bidirectional-load split Hopkinson compression bar[J]. Explosion and Shock Waves, 2018, 38(3):517-524.
[13]  庞书孟. 多维SHPB实验装置及其应用研究[D].广州大学, 2020.000177.
PANG Shumeng . Multi-dimensional SHPB experimental device and its application[D]. Guangzhou University, 2020.000177.
[14]  郭伟国. 应力波基础简明教程[M]. 西北工业大学出版社, 2007:1-10.
[15]  王礼立. 应力波基础[M]. 国防工业出版社, 2005:1-20.
[16]  张浩, 乔文靖, 杨帆,等. 强腐蚀桥梁钢Q345的J-C本构模型及数值模拟[J]. 郑州大学学报(工学版). 2021, 42(06):99-104.
ZHANG Hao , QIAO Wenjing , YANG Fan , et al. Tensile Finite Element Simulation of Q345 Bridge Steel with Strong Corrosion Based on J-C Model[J]. Journal of Zhengzhou University (Engineering Science). 2021, 42(06):99-104.
[17]  Xiao R , Li X X , Lang L H , et al. Biaxial tensile testing of cruciform slim superalloy at elevated temperatures[J]. Materials & Design, 2016.

PDF(2915 KB)

284

Accesses

0

Citation

Detail

段落导航
相关文章

/