基于分形曲线和空间卷曲的理念设计出一种声学超材料,具有小尺寸调控大波长的特点。利用等效参数法提取了该超材料的等效质量密度和体积模量,在特定的频率点处,这种声学超材料具有近零密度特性,可以实现声波的零相位差传播和能量无损耗传输。基于有限元法分析表明:在近零密度频率点处,该声学超材料可以实现特殊的声学现象如声隐身、声隧穿、波前整形和声异常透射。最后,测试了加工样品的透射系数,结果表明:实验数据与仿真计算结果符合较好,验证了结构的有效性,表明该声学超材料可以用于声学器件的设计。
Abstract
An acoustic metamaterial is designed based on the concept of fractal curve and spatial coiling, which has the characteristics of small size regulating large wavelength. The equivalent mass density and equivalent volume modulus of the metamaterial are extracted by the equivalent parameter method. At a specific frequency point, the acoustic metamaterial has the characteristic of near zero density, which can realize the zero-phase difference propagation and lossless energy transmission. The finite element analysis shows that the acoustic metamaterial can achieve special acoustic phenomena such as acoustic cloaking, acoustic tunneling, wavefront shaping and acoustic abnormal transmission at near zero density frequency points. Finally, the transmission coefficient of the sample is tested, and the results show that the experimental results are in good agreement with the simulation results, which verifies the validity of the structure, and indicates that the acoustic metamaterial can be used in the design of acoustic devices.
关键词
近零折射率 /
声学超材料 /
声隧穿 /
声隐身
{{custom_keyword}} /
Key words
Near zero refractive index /
Acoustic metamaterial /
Acoustic tunneling;Sound cloaking
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Liu J Y, Guo H B, Wang T. A Review of Acoustic Metamaterials and Phononic Crystals[J]. Crystals, 2020, 10(4): 305.
[2] 罗杰,赖耘. 零折射率材料的物理与应用[J]. 物理, 2019, 48(07): 426-437.
LUO Jie, LAI Yun. Physics and Application of zero refractive index materials[J]. Physics, 2019, 48(07): 426-437.
[3] 许 军,陈溢杭. 零折射率超材料研究进展[J]. 激光技术, 2018, 42(03): 289-294.
XU Jun, CHEN Yi-hang. Research progress of zero refractive index mematerials[J]. Laser Technology,2018, 42(03): 289-294.
[4] 蓝 君,李义丰. 密度为零的零折射率声学超材料研究[J]. 南京大学学报(自然科学), 2017, 53(01):69-75
LAN Jun, LI Yi-feng. Study on Zero Refractive Index Acoustic metamaterials with zero density[J]. Journal of Nanjing University(Natural Science), 2017, 53(01): 69-75.
[5] Zheng L Y, Wu Y, Xu N,et al. Acoustic cloaking by a near-zero-index phononic crystal[J]. Applied Physics Letters, 2014, 104(16): 161904.
[6] Romain F, Andrea A. Extraordinary sound transmission through density-near-zero ultranarrow channels.[J]. Physical review letters, 2013, 111(5): 05501.
[7] 孙宏祥,方 欣,葛 勇,等. 基于蜷曲空间结构的近零折射率声聚焦透镜[J]. 物理学报, 2017, 66(24): 145-153.
SUN Hong-xiang, FANG xin, GE Yong,et al. Near-zero refractive index acoustic focusing lens based on curled spatial structure[J]. Acta Physica Sinica, 2017, 66(24): 145-153.
[8] Wu G H, Ke Y B, Zhang L,et al. Acoustic manipulation of fractal metamaterials with negative properties and near-zero densities[J]. Applied Physics Express, 2022, 15(1): 014002.
[9] Park J J, Lee K J B, Wright Oliver B,et al. Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials.[J]. Physical review letters, 2013, 110(24): 244302.
[10] Liang Z X, Feng T H, Shukin L,et al. Space-coiling metamaterials with double negativity and conical dispersion.[J]. Scientific reports, 2013, 3(1): 1614.
[11] Liang Z X, Li J S. Extreme acoustic metamaterial by coiling up space.[J]. Physical review letters, 2012, 108(11): 114301.
[12] Man X F, Luo Z, Liu J,et al. Hilbert fractal acoustic metamaterials with negative mass density and bulk modulus on subwavelength scale[J]. Materials & Design, 2019, 180: 107911.
[13] 杨智为,周 涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21):21052-21060.
YANG Zhi-wei, ZHOU Han. Metamaterials structure Design based on Fractal Geometry:a Review[J]. Materials Reports, 2020, 34(21): 21052-21060.
[14] Kuo N K, Piazza G. Fractal phononic crystals in aluminum nitride: An approach to ultra high frequency bandgaps[J]. Applied Physics Letters, 2011, 99(16): 163501.
[15] Xu Y L, Tian X G, Chen C Q. Band structures of two dimensional solid/air hierarchical phononic crystals[J]. Physica B: Physics of Condensed Matter, 2012, 407(12): 1995-2001.
[16] Fokin V, Ambati M, Sun C,et al. Method for retrieving effective properties of locally resonant acoustic metamaterials[J]. Physical Review B, 2007, 76(14): 144302.
[17] Song B H, Bolton J S. A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials [J]. The Journal of the Acoustical Society of America, 2000, 107(3): 1131-1152.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}