晶向对铝合金构件微动疲劳初始起裂的影响研究

王建,阮星源

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 130-136.

PDF(1951 KB)
PDF(1951 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 130-136.
论文

晶向对铝合金构件微动疲劳初始起裂的影响研究

  • 王建,阮星源
作者信息 +

Effects of crystal orientation on crack initiation of fretting fatigue in aluminum alloy components

  • WANG Jian, RUAN Xingyuan
Author information +
文章历史 +

摘要

交变荷载作用下铝合金板材及结构组件的微动疲劳问题是飞机安全服役所面临的主要挑战和技术难题,而微动疲劳影响因素辨识是微动疲劳评估及控制的关键。为促进飞机构件微动疲劳评估及控制技术的发展,利用晶体塑性有限元方法和子模型-全局模型耦合技术研究了飞机机身铆钉-平板结构在压、剪交变应力循环作用下裂纹萌生特征,探讨了以晶向表征的材料细观织构分布对铝合金试样微动疲劳的影响。研究发现,晶向分布将对晶体材料的弹性模量和屈服及硬化强度造成明显影响;晶向分布对微动疲劳接触面起裂部位的影响不明显,而对亚表面起裂部位影响比较显著;晶向分布对微动疲劳初始起裂寿命的影响比较明显。研究结果表明,晶向分布这一细观织构影响了晶体材料宏观尺度的弹性强度特征和塑性变形特征,并对金属构件微动疲劳初始起裂寿命、亚表面裂缝发轫位置及扩展特征均造成了影响。基于本文的研究结论,利用材料加工方法改变金属晶体试样浅表层的晶向分布状态,将可以对微动疲劳裂缝发轫及扩展起到抑制作用。

Abstract

The fretting fatigue problem of aluminum alloy sheets and structural components under alternating loads is the main challenge and technical problem faced by the safe service of aircraft. The identification of fretting fatigue influencing factors is the key to fretting fatigue assessment and control. In order to promote the development of fretting fatigue assessment and control technology of aircraft components, this paper uses the crystal plasticity finite element method and sub-model-global model coupling technology to study the crack initiation characteristics of aircraft fuselage rivet-plate structures under the action of compressive and shear alternating stress cycles. The influence of the micro-texture distribution characterized by the crystallographic orientation on the fretting fatigue of aluminum alloy samples was discussed. The study found that the crystal orientation distribution will have a significant impact on the elastic modulus, yield and hardening strength of the crystalline material; the crystal orientation distribution has no obvious effect on the crack initiation part of the fretting fatigue contact surface, but has a more significant effect on the subsurface crack initiation part. The effect of grain orientation distribution on the initial crack initiation life of fretting fatigue is obvious. The research in this paper shows that the meso-texture of crystal orientation distribution affects the macroscopic elastic strength characteristics and plastic deformation characteristics of crystalline materials, and also affects the initial crack initiation life, subsurface crack initiation position and propagation characteristics of fretting fatigue of metal components. Based on the research conclusions of this paper, the use of material processing methods to change the crystal orientation distribution of the superficial layer of metal crystal samples can inhibit the initiation and propagation of fretting fatigue cracks.

关键词

微动疲劳 / 裂纹萌生 / 初始起裂部位 / 晶向 / 晶体塑性有限元

Key words

fretting fatigue / crack initiation / crack initiation location / grain orientation / crystal plasticity finite element

引用本文

导出引用
王建,阮星源. 晶向对铝合金构件微动疲劳初始起裂的影响研究[J]. 振动与冲击, 2023, 42(19): 130-136
WANG Jian, RUAN Xingyuan. Effects of crystal orientation on crack initiation of fretting fatigue in aluminum alloy components[J]. Journal of Vibration and Shock, 2023, 42(19): 130-136

参考文献

[1] 高志刚,何宇廷,马斌麟,等. 机翼用铝合金材料原始疲劳质量对比[J]. 航空学报, 2021, 42(5): 524375.
Gao Zhigang, He Yuting, Ma binlin, et al. Initial fatigue quality comparison of aluminum alloy materials for aircraft wings[J]. Acta Aeronautica et Astronuatica Sinica , 2021, 42(5): 524375]
[2] 杨茂胜,陈跃良,郁大照,等. 微动疲劳研究的现状与展望[J]. 强度与环境, 2008, 36(6): 45-54.
Yang Maosheng, Chen Yueliang, Yu Dazhao et al. Several key problems in studying on fretting fatigue[J]. Structure and environment engineering, 2008, 36(6): 45-54.
[3] Talemi R H, Wahab M A. Finite Element Analysis of Localized Plasticity in Al 2024-T3 Subjected to Fretting Fatigue[J]. Tribology Transactions, 2012, 55(6): 805-814.
[4] Majzoobi G H, Hojjati R, Soori M. Fretting fatigue behavior of Al7075-T6 at sub-zero temperature[J]. Tribology International, 2011, 44(11): 1443-1451.
[5] 刘道新,何家文. 微动疲劳影响因素及钛合金微动疲劳行为[J]. 航空学报, 2001, 22(5): 454-457.
Liu Daoxin, He Jiawen. Review of factors that influence fretting fatigue(FF) and investigation on FF behavior of Ti-alloy[J]. Acta Aeronautica et Astronuatica Sinica , 2001, 22(5): 454-457
[6] 卫中山,王珉,左敦稳,等. 钛合金的微动疲劳及其防护[J]. 材料科学与工程学报, 2003, 21(2): 293-297.
Wei Zhongshan, Wang Min, Zuo Dunwen, et al. Fretting fatigue of Titanium alloys and its protection[J]. Journal of material science and engineering, 2003, 21(2): 293-297.
[7] Minaii K, Farrahi G H, Karimpour M, et al. Investigation of microstructure effect on fretting fatigue crack initiation using crystal plasticity[J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(3): 640-650.
[8] McCarthy O J, McGarry J P, Leen S B. The effect of grain orientation on fretting fatigue plasticity and life prediction[J]. Tribology International, 2014, 76: 100-115.
[9] 田红亮,赵春华,方子帆,等. 微动结合部的一次加载过程[J]. 振动与冲击, 2014, 33(13): 40-52.
TIAN Hongliang, ZHAO Chunhua, FANG Zifan, et al. One loading process of fretting joint interface[J]. Journal of Vibration and Shock, 2014, 33(13): 40-52.
[10] 关海达,蔡振兵,陈志强,等. 基于不同支撑结构的薄壁管冲击微动磨损行为研究[J]. 振动与冲击, 2017, 36(21): 65-71.
GUAN Haida, CAI Zhenbin, CHEN Zhiqiang, et al. Impact fretting wear behaviour of thin-walled tubes with different support structures[J]. Journal of Vibration and Shock, 2017, 36(21): 65-71.
[11] 刘丽艳,王一鹏,朱勇,等. 蒸汽发生器U形管湍流抖振及微动磨损研究[J]. 振动与冲击, 2021, 40(8): 36-40.
LIU Liyan, WANF Yipeng, ZHU Yong, et al. A study on turbulent buffeting and fretting wear of U-tube of a steam generator[J]. Journal of Vibration and Shock, 2021, 40(8): 36-40.
[12] Nowell D A, Hills D. Mechanics of fretting fatigue[M]. Dordrecht; Boston: Kluwer Academic Publishers, 1994.
[13] Vázquez J, Carpinteri A, Bohórquez L, et al. Fretting fatigue investigation on Al 7075-T651 alloy: Experimental, analytical and numerical analysis[J]. Tribology International, 2019, 135: 478-487.
[14] Quey R, Dawson P R, Barbe F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(17): 1729-1745.
[15] Marin E B, Dawson P R. On modelling the elasto-viscoplastic response of metals using polycrystal plasticity[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 165(1): 1-21.
[16] Asaro R J. Crystal Plasticity[J]. Journal of Applied Mechanics, 1983, 50(4b): 921-934.
[17] Goh C H, Neu R W, McDowell D L. Crystallographic plasticity in fretting of Ti–6AL–4V[J]. International Journal of Plasticity, 2003, 19(10): 1627-1650.
[18] Li Y, Aubin V, Rey C, et al. Polycrystalline numerical simulation of variable amplitude loading effects on cyclic plasticity and microcrack initiation in austenitic steel 304L[J]. International Journal of Fatigue, 2012, 42: 71-81.
[19] Frederick C O, Armstrong P J. A mathematical representation of the multiaxial Bauschinger effect[J]. Materials at High Temperatures, 2007, 24(1): 1-26.
[20] Vuppala A W, Hojda X, Teller S, Hirt M. Investigation of texture evolution during rolling simulation of non-oriented SI based electrical steels with 2D and 3D RVE[C]. //6th European Conference on Computational Mechanics (ECCM 6); 7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, UK, Reese J de Borst R, 2018.
[21] Amirmaleki M, Samei J, Green D E et al. 3D micromechanical modeling of dual phase steels using the representative volume element method[J]. Mechanics of Materials, 2016, 101: 27-39.
[22] Ramazani A, Mukherjee K, Quade H et al. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach[J]. Materials Science and Engineering: A, 2013, 560: 129-139.
[23] WANG Jian, CHEN Tianju, ZHOU Caizhi. Crystal plasticity modeling of fretting fatigue behavior of an aluminum alloy[J]. Tribology International, 2021, 156: 106841.
[24] Hosford W F. Deformation twinning in nanocrystalline materials[M]. New York (NY): Oxford University Press, 1993.
[25] Li L, Shen L, Proust G. A texture-based representative volume element crystal plasticity model for predicting Bauschinger effect during cyclic loading[J]. Materials Science and Engineering: A, 2014, 608: 174-183.
[26] Johnson K L. Contact Mechanics[M]. Cambridge: Cambridge University Press, 1985.
[27] Nowell D, Hills D A. Mechanics of fretting fatigue tests[J]. International Journal of Mechanical Sciences, 1987, 29(5): 355-365.
[28] Fellows L J, Nowell D, Hills D A. Contact stresses in a moderately thin strip (with particular reference to fretting experiments)[J]. Wear, 1995, 185(1): 235-238.
[29] Boller C, Seeger T. Materials Data for Cyclic Loading: Aluminium and Titanium Alloys[M]. Vol. 42Elsevier, 1987.
[30] HAN Qinan, QIU Wenhui , HE Zhiwu, et al. The effect of crystal orientation on fretting fatigue crack formation in Ni-based single-crystal superalloys: In-situ SEM observation and crystal plasticity finite element simulation[J]. Tribology International, 2018, 125: 209-219.
[31] Korsunsky A M, Dini D, Dunne F P E, et al. Comparative assessment of dissipated energy and other fatigue criteria[J]. International Journal of Fatigue, 2007, 29(9): 1990-1995.

PDF(1951 KB)

Accesses

Citation

Detail

段落导航
相关文章

/