基于PI定理的船舶冲击环境预报方法研究

赵晓俊1,郭君1,杨俊杰2,王茀凡1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 137-143.

PDF(1848 KB)
PDF(1848 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 137-143.
论文

基于PI定理的船舶冲击环境预报方法研究

  • 赵晓俊1,郭君1,杨俊杰2,王茀凡1
作者信息 +

A method for predicting ship impact environment based on PI theorem

  • ZHAO Xiaojun1, GUO Jun1, YANG Junjie2, WANG Fufan1
Author information +
文章历史 +

摘要

考虑到船舶水下非接触爆炸冲击响应的强非线性传递规律,采用 聚类以及二分 聚类算法搭建的RBF网络对其冲击响应的谱速度值加以训练和预报。在网络中,选取仿真计算过程中涉及到的诸多参变量来表征船舶冲击环境的特征参数,利用量纲分析及π-定理理论分析方法将原始特征参数转换为无量纲量并且剔除不适应的参量。结果表明参数无量纲化处理可以提高网络对响应谱速度值的预报准确性,并使预报值偏离仿真结果10%范围内的占比有明显提升,此外得出结合无量纲参数的二分 聚类RBF网络模型对冲击环境谱速度值的预报效果最佳。

Abstract

Considered many non-linear transmission relationships of underwater non-contact explosion response of ships, a method of RBF network built by K-means clustering and binary K clustering algorithm was applied to train and forecast the velocity spectrum of the impact response. In this network, many variables involved in the simulation are available to represent the characteristic parameters, and the dimensional analysis and π-theorem theory analysis are used to convert the characteristic parameters into dimensionless ones and eliminate the unsuitable parameters. The experimental results show that the dimensionless processing of parameters can improve the accuracy of the network's prediction of velocity spectrum, and significantly increase the proportion of the prediction value deviating from the simulation result within the range of 10%. In addition, it is concluded that the binary K clustering RBF network model combining with the dimensionless parameters has the best prediction effect on the impact spectrum value.

关键词

冲击响应 / 无量纲 / 神经网络 / 聚类

Key words

impact response / dimensionless / neural network / clustering analysis

引用本文

导出引用
赵晓俊1,郭君1,杨俊杰2,王茀凡1. 基于PI定理的船舶冲击环境预报方法研究[J]. 振动与冲击, 2023, 42(19): 137-143
ZHAO Xiaojun1, GUO Jun1, YANG Junjie2, WANG Fufan1. A method for predicting ship impact environment based on PI theorem[J]. Journal of Vibration and Shock, 2023, 42(19): 137-143

参考文献

[1] 白兆宏.舰船远场水下爆炸冲击环境的建模方法[D]. 哈尔滨工程大学硕士论文,2012,1.
BAI Zhao-hong. Modeling method of ship far-field underwater explosion impact environment[D]. Master thesis of Harbin engineering university,2012,1.
[2] 候维达,吴用舒,刘志宇,陆圣才.实船结构的瞬态激振试验[J].振动与冲击,1983(01):45-50.
HOU Wei-da, WU Yong-shu, LIU Zhi-yu, LU Sheng-cai. Transient excitation test of solid ship structure[J]. Vibration and Shock, 1983(01):45-50.
[3] 冯麟涵,姚雄亮,汪玉,刘世明.基于本征函数的舰船冲击环境工程化预报方法[J].中国造船,2010,51(03):65-76.
FENG Lin-han,YAO Xiong-liang,WANG Yu,LIU Shi-ming. Engineering Forecasting Method of Ship Impact Environment Based on Eigenfunction Function[J]. China Shipbuilding,2010,51(03):65-76.
[4] GREENHORN J. The assessment of surface ship vul⁃nerability to underwater attack[J]. Royal Institution of Naval Architects Transactions,1989,131:1-12.
[5] 嵇春艳.水下爆炸荷载作用下大型舰船设备冲击环境预报方法[C].中国造船工程学会,2005:392-399.
JI Chun-yan. Shock environment forecasting method of large ship equipment under underwater explosive load[C]. Chinese Society of Naval Architecture and Engineering,2005:392-399.
[6] 仇栋熠,尹群.浅层水中爆炸载荷作用下舰船动态响应及设备冲击环境研究[J].江苏科技大学学报(自然科学版),2007(04):12-17.
QIU Dong-yi, YIN Qun. Study on ship dynamic response and equipment impact environment under blast load in shallow water[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2007(04):12-17.
[7] 姚雄亮,许维军.水面舰船的冲击环境与相关参数分析[J].哈尔滨工程大学学报,2005(01):24-29.
YAO Xiong-liang, XU Wei-jun. Analysis of Impact Environment and Related Parameters of Surface Ships[J]. Journal of Harbin Engineering University,2005(01):24-29.
[8] 李想,严子铭,柳占立.机器学习与计算力学的结合及应用初探.科学通报,2019,64:635-648.
LI Xiang, YAN Zi-ming, LIU Zhan-li. Combination and Application of Machine Learning and Computational Mechanics. Science Bulletin, 2019, 64: 635-648.
[9] Jun Guo, Meiting Wang, Youwei Kang, Yin Zhang, Chenxu Gu. Prediction of Ship Cabin Noise Based on RBF Neural Network[J].Mathematical Problems in Engineering.
[10] 刘翠丹. 船舶冲击环境工程化预报方法研究[D].哈尔滨工程大学,2013.
Liu Cui-dan. Research on Ship Impact Environmental Engineering Forecasting Method[D].Harbin Engineering University,2013.
[11] 冯麟涵. 舰船系统抗冲击性能全局优化方法研究[D].哈尔滨工程大学,2009.
Feng Linhan. Research on global optimization method of impact resistance performance of ship system[D].Harbin Engineering University,2009.
[12] 强浩垚.基于模式识别的舰艇冲击响应谱研究[D].中北大学硕士论文,2019,05.
QIANG Hao-yao. Research on Ship Impact Response Spectrum Based on Pattern Recognition[D]. Master's Thesis of North University of China, 2019,05.
[13] Guo J, Gu C X, Yang J J, et al. Data mining and application of ship impact spectrum acceleration based on PNN neural network[J]. Ocean Engineering, 203(2020)107193
[14] 张春辉,张磊,赵海江,胡易舟,李海涛. 基于聚类分析的舰船冲击环境区域划分方法[J].中国舰船研究,2020,v.15;No.88(05):147-153.
Zhang Chun-hui,Zhang Lei,Zhao Hai-jiang,Hu Yi-zhou,Li Ha-itao. Classification method of ship impact environment based on cluster analysis[J].China Ship Research,2020,v.15; No.88(05):147-153.
[15] Cersonsky R K, Helfrecht B, Engel E A, et al. Improving sample and feature selection with principal covariates regression[J]. Machine Learning: Science and Technology, 2021.
[16] 郭涵,李天赠,李南馨,张祖铭,张杰. 基于有利特征筛选与风阻仿真分析的摩托车头盔造型设计[J].机械设计,2021,v.38;No.382(08):124-132.
Guo Han,Li Tianzhi,Li Nanxin,Zhang Zuming,Zhang Jie. Motorcycle helmet modeling design based on favorable feature screening and wind resistance simulation analysis[J].Mechanical Design,2021,v.38; No.382(08):124-132.
[17] 李建光. 岩土类材料的损伤本构模型及其在冲击动力学问题中的应用[D]. 中国科学技术大学, 2007.
Li Jian-guang. Damage constitutive model of geotechnical materials and its application in impact dynamics problems[D]. University of Science and Technology of China, 2007.
[18] Sanchez F, Budinger M, and Hazyuk I. Dimensional analysis and surrogate models for the thermal modeling of multiphysics systems[J]. Applied Thermal Engineering, 2017,110:758–71.
[19] Lynch J, Gau J, Sponberg S, et al. Dimensional analysis of spring-wing systems reveals performance metrics for resonant flapping-wing flight[J]. Journal of the Royal Society Interface, 2021, 18(175): 20200888.
[20] Dong H, Sun Z, Li Z, et al. Artificial Intelligence for Predicting Local Scour Depth around Piers Based on Dimensional Analysis[J]. Journal of Coastal Research, 2020, 111(SI): 21-25.
[21] Yang C C, Lin D K J. A note on selection of basis quantities for dimensional analysis[J]. Quality Engineering, 2021, 33(2): 240-251.
[22] Dua D, Graff C. UCI machine learning repository[J]. 2017.
[23] 王 军.浮动冲击平台冲击动力特性研究[D]. 哈尔滨工程大学博士论文,2015,10.
WANG Jun. Study on impact dynamic characteristics of floating impact platform[D]. Doctoral Dissertation of Harbin Engineering University,2015,10.
[24] 温岩岩.舰船水下爆炸冲击环境预报的组合模型方法研究[D]. 哈尔滨工程大学硕士论文,2017,1.
Wen Yan-yan. Research on Combined Model Method of Underwater Explosion Impact Environment Forecasting of Ships[D]. Master's Thesis of Harbin Engineering University,2017,1.
[25] 郭君.加筋双层筒形结构冲击环境特性研究[D].哈尔滨工程大学硕士论文,2005,12.
GUO Jun. Study on impact environmental characteristics of reinforced double-layer cylindrical structure[D]. Master's Thesis of Harbin Engineering University,2005,12.
[26] Chen S, Cowan C F, Grant P M, et al. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Transactions on Neural Networks, 1991, 2(2): 302-309.
[27] Hardy R L. Multiquadric Equations of Topography and Other Irregular Surfaces [J].Journal of Geophysical Research, 1971, 76: 1905-1915.
[28] Jun Guo, Chenxu Gu, Junjie Yang, Yin Zhang, Heng Yang. Data mining and application of ship impact spectrum acceleration based on PNN neural network[J]. Ocean Engineering,203(2020)107193.
[29] 邵宝力,路达,赵东辉.量纲分析法在物理系统与数值模拟系统物理量转换中的应用[J].吉林化工学院学报,2018,35(09):1-3.
Shao Bao-li, Lu Da, Zhao Dong-hui. Application of Dimensional Analysis Method in Physical Quantity Conversion between Physical System and Numerical Simulation System[J]. Journal of Jilin Institute of Chemical Technology,2018,35(09):1-3.
[30] D. Shuman and S. Narang and P. Frossard and A. Ortega and P. Vandergheynst. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013(30): 83-98.
[31] Wang, Ruo Jiang et al. A dimensionless study on thermal control of positive temperature coefficient (PTC) materials[J].International Communications in Heat and Mass Transfer(2020): 104987.
[32] 钟巍,田宙,寿列枫.基于线性代数的大规模快速量纲分析算法及其在爆炸与冲击工程研究中的应用[J].计算数学,2020,42(02):170-195.
ZHONG Wei, TIAN Zhou, SHOU Lie-feng. Large-scale rapid dimensional analysis algorithm based on linear algebra and its application in explosion and impact engineering[J].Computational Mathematics,2020,42(02):170-195.
[33] 杨淑莹.模式识别与智能计算[R].电子工业出版社,2015
YANG Shu-ying. Pattern Recognition and Intelligent Computing[R]. Electronic Industry Press, 2015.

PDF(1848 KB)

Accesses

Citation

Detail

段落导航
相关文章

/