气动噪声源频域自适应区域积分算法及风洞试验应用

赵佳锡,章荣平,张俊龙,李征初,宋玉宝

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 162-171.

PDF(3418 KB)
PDF(3418 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 162-171.
论文

气动噪声源频域自适应区域积分算法及风洞试验应用

  • 赵佳锡,章荣平,张俊龙,李征初,宋玉宝
作者信息 +

Frequency domain adaptive region integration algorithm for aerodynamic noise sources and its application in wind tunnel tests

  • ZHAO Jiaxi, ZHANG Rongping, ZHANG Junlong, LI Zhengchu, SONG Yubao
Author information +
文章历史 +

摘要

声源区域积分算法是风洞试验中提取飞机组成部件气动噪声源特征的有效数据处理方法。传统声源区域积分算法的积分区域固定,但是飞机机体的气动噪声分布特征会随频率发生明显变化,导致积分结果存在较大误差。为提高频域分布特征变化的声源积分结果准确性,提出了基于CLEAN-SC算法的频域自适应区域积分算法,核心思想是将声源积分区域离散划分,依据CLEAN-SC算法得到的子区域内最强声源位置进行积分区域的自适应优化,从而获取更准确的声源积分结果。通过仿真计算和声学风洞试验数据分析,频域自适应区域积分算法能够得到更为准确的声源积分结果,对于机体气动噪声等动态声源具有更好的适用性。

Abstract

Source region integration algorithm is an effective method to obtain aeroacoustics characteristics of aircraft components in wind tunnel test. The integration region of the traditional algorithm is fixed, but the aerodynamic noise distribution characteristics of airframe noise change with frequency, which will lead to error in the integration results. In order to improve the accuracy of dynamic source integration result, frequency domain adaptive integration algorithm based on CLEAN-SC is proposed, the core idea is to discretize the source integration region, and optimize the integration region adaptively according to the strongest source position in the sub-region obtained by CLEAN-SC algorithm. Through simulation and wind tunnel test data analysis, the frequency domain adaptive integration algorithm can get more accurate integration results, and is better to dynamic acoustic source like airframe noise.

关键词

气动噪声 / 风洞试验 / 声源区域积分 / 机体噪声

Key words

aeroacoustics / wind tunnel test / source region integration / airframe noise

引用本文

导出引用
赵佳锡,章荣平,张俊龙,李征初,宋玉宝. 气动噪声源频域自适应区域积分算法及风洞试验应用[J]. 振动与冲击, 2023, 42(19): 162-171
ZHAO Jiaxi, ZHANG Rongping, ZHANG Junlong, LI Zhengchu, SONG Yubao. Frequency domain adaptive region integration algorithm for aerodynamic noise sources and its application in wind tunnel tests[J]. Journal of Vibration and Shock, 2023, 42(19): 162-171

参考文献

[1] 李伟鹏. 大型客机增升装置噪声机理与噪声控制综述[J]. 空气动力学报, 2018, 36(3): 372-384+409.
LI Weipeng. Review of the mechanism and noise control of high-lift device noise[J]. Acta Aerodynamica Sinica, 2018, 36(3): 372-384, 409.
[2] 刘沛清, 李玲, 邢宇等. 大型飞机增升装置气动噪声研究进展[J]. 空气动力学学报, 2017, 35(4): 472-484.
LIU Peiqing, LI Ling, XING Yu, et al. Developments of aeroacoustic investigation on high-lift device for large air- crafts[J]. Acta Aerodynamica Sinica, 2017, 35(4): 472-484.
[3] 李鑫, 屈转利, 李耿等. 高效低噪的二维翼型优化设计[J]. 振动与冲击, 2017, 36(4): 66-72.
LI Xin, QU Zhuanli, LI Geng, et al. Development of investigation on high-lift device noise for large aircrafts[J]. Journal of Vibration and Shock, 2017, 36(4): 66-72.
[4] Merino-Martinez R. Microphone arrays for imaging of aerospace noise sources[D]. Delft University of Technology, Ph.D. thesis, 2018.
[5] 乔渭阳, 王良锋. 航空发动机实验气动声学[M]. 科学出版社, 2022.04.
[6] Epstein A.H. Aeropropulsion for commercial aviation in the 21st century and research directions needed, AIAA-2013-000 [R]. Reston: AIAA, 2013.
[7] Chiariotti P, Martarelli M, Castellini. Acoustic beamforming for noise source localization – reviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2019, 120:422-448.
[8] 陈大斌, 周家检, 郝璇等. 气动噪声风洞试验技术发展概述[J]. 实验流体力学, 2013, 27(1): 106-112.
CHEN Dabin, ZHOU Jiajian, HAO Xuan, et al. Review of aeroacoustic measurement techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(1): 106-112.
[9] Yuzuru Y, Mitsuhiro M, Takehisa T, et al. Acoustic wind tunnel test with 18% scale half-span model toward FQUROH second flight demonstration[C]. 2018 AIAA/CEAS Aeroacoustics Conference, Atlanta GA, USA, 2018.
[10] Guo Y.P., Yamamoto K.J., Stoker R.W. Component-based empirical model for high-lift system noise prediction[J]. Journal of Aircraft, 2003, 40(5): 914-922
[11] Merino-Martinez R, Sijtsma P, Carpio R. A, et.al. Integration methods for distributed sound sources[J]. International Journal of Aeroacoustics, 2019, 0(0):1-26
[12] Mosher M. Phased arrays for aeroacoustic testing: theoretical development[C]. 2nd AIAA/CEAS Aeroacoustics Conference, Pennsylvania, USA, 1996.
[13] Brooks T.F., Humphreys W.M. Effect of directional array size on the measurement of airframe noise components[J]. AIAA Paper 99-1958, 1999.
[14] Mosher M., Watts E.M., Barnes M., et al. Microphone array phased processing system (mapps): phased array system for acoustic measurements in a wind tunnel[C]. 1999 World Aviation Conference, San Francisco, USA, 1999.
[15] Dougherty R.P. Functional beamforming for aeroacoustic source distributions[C]. 20th AIAA/CEAS Aeroacoustics Conference, Atlanta GA, USA, 2014.
[16] Dougherty R.P. Determining spectra of aeroacoustic sources from microphone array data[C]. 25th AIAA/CEAS Aero- acoustics Conference, Delft, The Netherlands, 2019
[17] 张军, 王勋年, 张俊龙等. 开口风洞声阵列测量的剪切层修正方法[J]. 实验流体力学, 2018, 32(4): 39-46.
ZHANG Jun, WANG Xunnian, ZHANG Junlong, et al. Shear layer correction methods for open-jet wind tunnel phased array test[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 39-46.
[18] Oerlemans S. Detection of aeroacoustic sound sources on aircraft and wind turbines[D]. University of Twente, Ph.D. thesis, 2009.
[19] 杨洋, 褚志刚. 基于CLEAN-SC清晰化波束形成的汽车前围板隔声薄弱部位识别[J]. 声学技术, 2015, 34(5): 449-456
YANG Yang, CHU Zhigang. Weak position identification of sound insulation for car dash panel based on CLEAN-SC clearness beamforming[J]. Technical Acoustics, 2015, 34(5): 449-456.
[20] 褚志刚, 余立超, 杨洋等. CLEAN-SC波束形成声源识别改进[J]. 振动与冲击, 2019, 38(15): 87-94.
CHU Zhigang, YU Lichao, YANG Yang, et al. Improved acoustic source identification based on CLEAN-SC beam- forming[J]. Journal of Vibration and Shock, 2019, 38(15): 87-94.
[21] 李征初, 李勇, 陈正武等. CLEAN-SC算法在风洞声源定位与识别中的应用研究[J]. 实验流体力学, 2016, 30(3): 104-109.
LI Zhengchu, LI Yong, CHEN Zhengwu, et al. Noise identi- fication and location in wind tunnel using CLEAN-SC algorithm[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 104-109.

PDF(3418 KB)

251

Accesses

0

Citation

Detail

段落导航
相关文章

/