通过CFD方法对亚临界状态下的圆柱绕流开展了数值模拟,将不同计算工况下的平均风压、平均风速、脉动风速、斯托劳哈数(St)等结果与试验结果进行对比,研究了近壁面网格及展向长度对结果的影响,比较了LES与k SST 湍流模型的计算结果。在此基础上,针对覆冰导线分别建立二维与三维计算模型,计算了新月形薄覆冰单导线的气动三分力系数,并与试验结果进行对比。利用覆冰导线表面风压分布特性对空气动力学参数随攻角变化出现的尖峰现象进行了分析。结果表明二维与三维覆冰导线模型存在较大区别,采用三维计算模型是必要的,展向长度取3倍导线直径能取得较好的计算结果。
Abstract
The flow around a circular cylinder in subcritical state is calculated by CFD numerical simulation method. The results of average wind pressure, average wind speed, fluctuating wind speed, stolawha number (St), etc. under different calculation conditions are compared with the experimental results. The influence of near wall mesh and spanwise length on the results is studied, and the calculation results of LES and k- SST turbulence model are compared. With that, Two and three dimensional calculation models are established respectively for iced conductors, and the aerodynamic three-component coefficients of crescent thin iced single conductor are calculated and compared with the experimental results. The phenomenon of sharp peaks and jumps of aerodynamic parameters with the change of angle of attack is analyzed based on the distribution characteristics of wind pressure on the surface of iced conductors. The results show that there are significant differences between two-dimensional and three-dimensional iced conductor models. In order to obtain accurate numerical solutions, it is necessary to use a three-dimensional calculation model, and 3 times of conductor diameter for spanwise length should be considered to obtain much better accuracy of the results.
关键词
覆冰导线 /
圆柱绕流 /
气动力特性 /
数值模拟 /
展向长度
{{custom_keyword}} /
Key words
ice accreted conductor /
flow over a circular cylinder /
aerodynamic characteristics /
numerical simulation /
spanwise length
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Den Hartog J P. Transmission line vibration due to sleet[J]. AIEE Transactions, 1932, 51(4): 1074-1086.
[2] Nigol O, Buchan P.G. Conductor Galloping Part1-Den Hartog Mechanism[J]. IEEE Transactions on Power Apparatus and System, 1981, 100(2):699-707.
[3]楼文娟,梁洪超,温作鹏. 覆冰多分裂导线三种TMD防舞效果对比研究[J]. 振动与冲击.2020, 39(14):36-41.
LOU Wenjuan, LIANG Hongchao, WEN Zuopeng. Comparative study on the anti-galloping effect of three types of TMDs for iced multi-bundled conductors [J]. Journal of Vibration and Shock. 2020, 39(14):36-41.
[4] Chadha J. and Jaster W. Influence of turbulence on the galloping instability of iced conductors[J]. IEEE Transactions on Power Apparatus and System, 1975, 94(5):1489-1499.
[5] Chabart O., Lilien JL. Galloping of electrical lines in wind tunnel facilities[J].Joumal of Wind Engineering and Industrial Aerodynamics,1998, 74(6):967-976.
[6]Ishihara T. A wind tunnel study on aerodynamic characteristics of ice accreted transmission lines[C]. 5 th International colloquium on bluff body aerodynamics and applications, Ottawa, 2004: 369-372.
[7] 张宏雁,严波,刘小会 等. 覆冰导线气动特性及驰振风洞试验[J]. 振动与冲击. 2013, 32(10):95-99.
ZHANG Hongyan, YAN Bo, LIU Xiaohui et al. Wind-tunnel tests for aerodynamic characteristics and galloping behaviors of iced conductors[J]. Journal of Vibration and Shock. 2013, 32(10):95-99.
[8]顾明,马文勇,全涌等,两种典型覆冰导线气动力特性及稳定性分析[J].同济大学学报(自然科学版), 2009, 37(10):1328-1332.
GU Ming, MA Wenyong, QUAN Yong, et al. Aerodynamic force characteristics and stabilities of two typical iced conductors[J]. Journal of Tongji University (Natural Science). 2009, 37(10):1328-1332.
[9]马文勇, 顾明,全涌等.准椭圆形覆冰导线气动力特性试验研究[J]. 同济大学学报(自然科学版), 2010, 38(10):1409-1413.
MA Wenyong, GU Ming, QUAN Yong, et al. Testing study on aerodynamic force characteristics of quasi-oval shape iced conductor[J]. Journal of Tongji University (Natural Science). 2009, 37(10):1328-1332.
[10] 姚育成.高雷诺数下覆冰导线气动力特性的数值模拟 [D].武汉:华中科技大学.2003:40-51.
YAO Yucheng. Numerical simulation of aerodynamic characteristics of iced conductor under high Reynolds number[D].Wuhan: Huazhong University of Science and Technology. 2003:40-51.
[11] 吕翼,楼文娟,孙珍茂,等.覆冰三分裂导线气动力特性的数值模拟[J].浙江大学学报(工学版), 2010, 44(1):174-179.
LV Yi, LOU Wenjuan, SUN Zhenmao, et al. T Numerical simulation of aerodynamic characteristics of three bundled iced transmission lines [J]. Journal of Zhejiang University(Engineering Science). 2010, 44(1):174-179.
[12]李新民, 朱宽军, 刘彬. 典型覆冰导线空气动力学特性数值和试验模拟[J].高电压技术, 2014, 40(2): 427-433.
LI Xinmin, ZHU Kuanjun, LIU Bin. Numerical and experimental simulation of aerodynamic characteristics of typical iced conductor[J]. High Voltage Engineering, 2014, 40(2): 427-433.
[13]韦远武,虢韬,张鹏程 等. 脉动风场覆冰导线动态气动力特性研究[J]. 振动与冲击. 2020, 39(24):150-155.
WEI Yuanwu, GUO Tao, ZHANG Pengcheng, et al. A study on dynamic aerodynamic characteristics of an iced conductor in pulsating wind fied[J]. 振动与冲击. 2020, 39(24):150-155.
[14]李彭举, 李明, 姚勇. 特高压新月型覆冰导线气动力特性研究[J].西南科技大学学报, 2015,30(2):69-73.
LI Pengju, LI Ming, YAO Yong. Study of aerodynamic parameters of UHV iced conductor with crescent shape [J]. Journal of Southwest University of Science and Technology, 2015,30(2):69-73.
[15] Breuer M. Large eddy simulation of the subcritical flow past a circular cylinder: numerical and modeling aspects[J]. Int. J. Numer. Meth. Fluids. 1998, 28: 1281-1302
[16] Arthur G. Kravchenkoa and Parviz Moin. Numerical studies of flow over a circular cylinder at ReD=3900[J]. Phys. Fluids, 2000, 12(2):403-417
[17] CIGRE, State of the art of conductor galloping, CIGRE Technical Brochure, No,322, TF B2.11.O6. 2007
[18]闫东, 吕中宾, 林巍, 等. 湍流度对覆冰导线气动力特性影响的试验研究[J].高电压技术, 2014, 40(2):450-457.
YAN Dong, LV Zhongbin, LIN Wei, el al. Experimental Study on Effect of Turbulence Intensity on the Aerodynamic Characteristics of iced conductors[J]. High Voltage Engineering, 2014, 40(2):450-457.
[19] Lourenco L.M. & Shih C. Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study, Private Communication, 1993.
[20] Ong L.& Wallace J. The velocity field of the turbulent very near wake of a circular cylinder[J], Exp. Fluids, Springer Verlag, Berlin,1996, 20: 441-453.
[21] Son J.& Hanratty T.J. Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from 5×103 to 105[J]. Fluid Mech., 1969, 35: 353-368.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}