中空玻璃在动荷载作用下的主参数共振分析

潘应桂1,田水1,谷倩1,刘治国1,胡飞2,成鹏2,彭云涛2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 188-193.

PDF(1335 KB)
PDF(1335 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 188-193.
论文

中空玻璃在动荷载作用下的主参数共振分析

  • 潘应桂1,田水1,谷倩1,刘治国1,胡飞2,成鹏2,彭云涛2
作者信息 +

Resonance analysis of main parameters of insulating glass under dynamic load

  • PAN Yinggui1, TIAN Shui1, GU Qian1, LIU Zhiguo1, HU Fei2, CHENG Peng2, PENG Yuntao2
Author information +
文章历史 +

摘要

在考虑动荷载作用下中空玻璃空腔体积改变与空腔内气体压强的关系,玻璃的双模量特性、大挠度变形时玻璃的中面拉力、玻璃的阻尼以及惯性力等因素的基础上,利用静力平衡方程、几何变形方程及物理方程,建立了玻璃的动力学方程;在动荷载作用下,考虑中空玻璃空腔体积改变与空腔内气体压强的关系、玻璃的双模量特性、大挠度变形时玻璃的中面拉力、玻璃的阻尼以及惯性力等因素,利用静力平衡方程、几何变形方程及物理方程,建立了玻璃的动力学方程;运用多尺度法求解玻璃的动力学方程,得到了玻璃的幅频响应方程和相频响应方程;通过绘制振幅响应曲线,分析了阻尼系数、玻璃的边长、玻璃厚度等因素对玻璃振幅的影响,分析结果表明:阻尼系数和玻璃边长对玻璃共振特性振幅的影响较大,玻璃厚度的影响较小。

Abstract

Under the action of dynamic load, the dynamic equation of hollow glass is established by using the static equilibrium equation, the geometric deformation equation and the physical equation, considering the relationship between the volume change of the hollow glass cavity and the gas pressure in the cavity, the bimodulous characteristic of the glass, the tension of the middle surface of the glass during large deflection deformation, the damping of the glass and the inertial force.On the basis of considering the relationship between the volume change of the cavity of the insulating glass and the gas pressure in the cavity under dynamic load, the double modulus characteristics of the glass, the mid-surface tension of the glass under large deflection deformation, the damping of the glass and the inertial force, the dynamic equation of the glass is established by using the static equilibrium equation, the geometric deformation equation and the physical equation; The dynamic equation of glass is solved by multi-scale method, the amplitude frequency response equation and phase frequency response equation of glass are obtained; By drawing the amplitude response curve, tThe influence of damping coefficient, glass edge length and glass thickness on the amplitude of glass is analyzed. The results show that damping coefficient and glass edge length have great influence on the amplituderesonance characteristics of glass, and the influence of glass thickness is minor.

关键词

中空玻璃 / Galerkin方法 / 主共振 / 多尺度法 / 动力学方程

Key words

insulating glass / Galerkin method / main resonance / multiscale method / dynamics equation

引用本文

导出引用
潘应桂1,田水1,谷倩1,刘治国1,胡飞2,成鹏2,彭云涛2. 中空玻璃在动荷载作用下的主参数共振分析[J]. 振动与冲击, 2023, 42(19): 188-193
PAN Yinggui1, TIAN Shui1, GU Qian1, LIU Zhiguo1, HU Fei2, CHENG Peng2, PENG Yuntao2. Resonance analysis of main parameters of insulating glass under dynamic load[J]. Journal of Vibration and Shock, 2023, 42(19): 188-193

参考文献

[1] 龚昌基.四边支承中空玻璃承载力的计算问题—考虑空腔体积与压强变化的关系[J].福建建筑,2010,(07): 27-31.
Gong Changji. Calculation of bearing capacity of insulating glass supported on four sides--the relationship between cavity volume and pressure is considered[J]. Fujian Architecture & Construction,2010,(07): 27-31
[2] 赵刚,贾亚丽.高速动车组中空玻璃气动载荷计算[J].电力机车与城轨车辆,2018,41(05): 17-19.
Zhao Gang, Jia Yali. Aerodynamic load calculation of hollow glass in high speed EMU[J]. Electric Locomotives & Mass Transit Vehicles, 2018, 41(05): 17-19.
[3] Beason, W.Lynn (1986). StructuralAnalysis of sealed lnsula-ting Glass.Journal of Structural Engineering, 112(5), 1133-1146
[3][4] 吴晓,杨立军,黄翀.风荷载作用下中空幕墙玻璃的非线性弯曲[J].中南大学学报(自然科学版),2015,46(01): 304-309.
Wu Xiao,Yang Lijun,Huang Chong. Nonlinear bending of hollow glass of curtain wall under uniform loads [J]. Journal of Central South University (Science and Technology), 2015,46(01):304-309
[4][5] 吴晓,杨立军,黄翀等.双模量矩形板的大挠度弯曲计算分析[J].工程力学,2010,27(01): 17-22.
Wu Xiao, Yang Lijun, Huang Chong, et. large deflection bending calculation and analysis of bimodulous rectangular plate [J]. Engineering Mechanics,2010,27(01): 17-22.
[5][6] 史博,张晓颖,李阔,李志强.爆炸载荷下中空夹层玻璃的动力响应影响因素[J].爆炸与冲击,2018,38(01):119-123.
Shi Bo,Zhang Xiaoying,Li Kuo,Li Zhiqiang. Influencing factors of dynamic response of insulating laminated glass under explosion load [J]. Explosion and Shock Waves, 2018, 38(01):119-123.
[7] 石永久,马赢,王元清. 点支式双层中空玻璃板的变形性能分析[J].工业建筑,2005,(2): 20-22, 15
Shi Yongjiu,Ma Ying,Wang Yuanqing. Analysis of deformation properties of point supporting mid-hollow glass[J]. Industrial Construction, 2005, (2): 20-22,15
[8] Ekaterina Gerasimova; Alexander Galyamichev; Gregor Schwind; Jens Schneider. Deflection of a cladding panel of fully tempered glass in curtain wall system[J]. Magazine of Civil Engineering,2021,Vol.104(4): 10403
[9] Respondek, Zbigniew; Kozłowski, Marcin; Wiśniowski, Maciej. Deflections and Stresses in Rectangular, Circular and Elliptical Insulating Glass Units.[J]. Materials,2022,Vol.15(7): 2427
[10] 童丽萍,李明.风荷载作用下玻璃幕墙结构的受力分析与计算[J].工业建筑,2000,(4): 27-30
Tong Liping,Li Ming. Stressing analysis and calculation of glass curtian-wall under wind load[J]. Industrial Construction, 2000, (4): 27-30
[11] 董文堂,邹东峰.幕墙玻璃板的非线性力学分析[J].土木工程学报,2001,第34卷(5): 97-100
Dong Wentang,Zou Dongfeng. Nonlinear mechanical analysis of curtain wall glass plate[J]. China Civil Engineering Journal, 2001, 34(5) : 97-100
[12] Ruoqiang F, Jihong Y, Yue W, et al. Mechanical behavior of glass panels supported by clamping joints in cable net facades[J]. International Journal of Steel Structures, 2012, 12(1): 15−24.
[13] Gang S, Yongzhi Z, Xiaohao S, et al. Influence of damages on static behavior of single-layer cable net supported glass curtain wall: full-scale model test [J]. Frontiers of Architecture and Civil Engineering in China, 2010, 4(3): 383−395.
[14] 彭震,陆海翔 ,杨志安 . Winkler地基梁在温度场中受简谐激励作用下的主共振和主参数共振分析[J].机械强度,2007,(4): 695-698
Peng Zhen, Lu Haixiang, Yang Zhian. Analysis on primary resonant and primary parametric resonant of harmonically driven on winkler foundation in temperature field[J]. Journal of Mechanical Strength, 2007, (4): 695-698
[15] 杨志安,李文兰.Winkler地基上四边自由矩形薄板的亚谐共振与奇异性分析[J].机械强度,2007,(2): 329-333
Yang Zhian, Li Chunlan.Subharmonic resonance of rectangular thin plate with four sides free on winkler foundation and its singularity analysis[J]. Journal of Mechanical Strength, 2007, (2): 329-333
[16] 解梦雪,胡宇达.双线载作用轴向运动薄板的主-内联合共振[J].机械强度,2022,第44卷(2): 255-262
Xie Mengxue, Hu Yuda. Principal-internal resonance of an axially moving thin plate subjected to double line loads[J]. Journal of Mechanical Strength,2022, Vol.44(2): 255-262
[17] 杨志安,赵雪娟.非线性弹性地基上矩形薄板受双频参数激励作用的非线性振动[J].应用力学学报,2007,(3): 494-494
Yang Zhian, Zhao Xuejuan. Nonlinear vibration of rectangular thin plate excited by dual-frequency parameters on nonlinear elastic foundation[J]. Chinese Journal of Applied Mechanics, 2007, (3): 494-494
[18] 杨志安,李志永.非线性弹性地基上受简谐激励矩形薄板的主共振[A].第七届全国非线性动力学学术会议暨第十届全国非线性振动学术会议[C],2004
Yang Zhian, Li Zhiyong. Main resonance of rectangular thin plate excited by harmonic excitation on nonlinear elastic foundation[A]. Seventh National Conference on Nonlinear Dynamics and Tenth National Conference on Nonlinear Vibration[C],2004
[19] 高永毅,唐果,万文.非线性弹性地基上矩形薄板的动力学研究[J].振动与冲击,2013,第32卷(16): 182-186
Gao Yongyi, Tang Guo, Wang Zhang. Dynamics of thin rectangular plate on nonlinear elastic foundation[J]. Journal of Vibration and Shock, 2013, Vol.32(16): 182-186
[20] 张小广,胡宇达,任兴利.四边固支功能梯度矩形板的主共振分析[J].振动与冲击,2011,30(06):153-157.
Zhang Xiaoguang, Hu Yuda, Ren Xingli. Nonlinear principal resonance of clamped funtionally graded rectangular plate[J]. Journal of Vibration and Shock,2011,30(06):153-157.
[21] 邱平,王新志,叶开沅.非线性弹性地基上的圆薄板的分岔与混沌问题[J].应用数学和力学,2003(08):779-784.
Qiu Ping, Wang Xinzhi, Ye Kaiyuan. Bifurcation and chaos of circular thin plate on nonlinear elastic foundation[J]. Applied Mathematics and Mechanics, 2003(08):779-784.
[22] 宋锦威.应用广义位移原理求解大挠度矩形板弯曲问题[D].燕山大学,2017.
Song Jinwei. Application of generalized displacement principle to solve the bending problem of rectangular plates with large deflection [D]. Yanshan University, 2017
[23] (美)S.铁摩辛柯,S.沃诺斯基著;《板壳理论》翻译组译. 板壳理论[M]. 北京:科学出版社, 1977.10.
[6] 冯若强.单层平面索网玻璃幕墙结构静动力性能研究[D].哈尔滨工业大学,2006
Feng Ruoqiang. Static and dynamic performance of cable net facade [D]. Harbin Institute Of Technology, 2006
[7] 石永久,马赢,王元清. 点支式双层中空玻璃板的变形性能分析[J].工业建筑,2005,(2): 20-22, 15
Shi Yongjiu,Ma Ying,Wang Yuanqing. Analysis of deformation properties of point supporting mid-hollow glass[J]. Industrial Construction, 2005, (2): 20-22,15
[8] 童丽萍,李明.风荷载作用下玻璃幕墙结构的受力分析与计算[J].工业建筑,2000,(4): 27-30
Tong Liping,Li Ming. Stressing analysis and calculation of glass curtian-wall under wind load[J]. Industrial Construction, 2000, (4): 27-30
[9] 董文堂,邹东峰.幕墙玻璃板的非线性力学分析[J].土木工程学报,2001,第34卷(5): 97-100
Dong Wentang,Zou Dongfeng. Nonlinear mechanical analysis of curtain wall glass plate[J]. China Civil Engineering Journal, 2001, 34(5) : 97-100
[10] 潘勤学,郑健龙.考虑拉压模量不同的沥青路面力学计算方法与分析[J].土木工程学报,2020,第53卷(01): 110-117
Pan Qinxue, Zheng Jianlong. Mechanical calculation method and analysis of asphalt pavement considering different modulus in tension and compression[J]. China Civil Engineering Journal, 2020, Volume 53(01): 110-117
[11] 黄春林,彭建设.双参数弹性地基上双模量梁的频率响应分析[J].成都大学学报(自然科学版),2020,第39卷(2): 204-208
Huang Chunlin,Peng Jianshe. Frequency response analysis of double modulus beams on two-parameter elastic foundation[J]. Journal of Chengdu University (Natural Science),2020, Volume 39(2): 204-208
[12] 曹彩芹,宋永超.任意边界条件下双模量矩形薄板的弯曲[J/OL].计算力学学报:1-5.
Cao Caiqin,Song Yongchao. Bending of Double Modulus Rectangular Thin Plates under Arbitrary Boundary Conditions[J/OL]. Chinese Journal of Computational Mechanics:1-5.
[13] 韩朝晖.用Chebyshev函数研究双模量梁变形时的解析解[J].湘潭大学学报(自然科学版),2021,43(1):49-57.
HAN Zhaohui. Using Chebyshev function to study the analytical solution of double-modulus beam deformation [J]. Journal of Xiangtan University (Natural Science Edition), 2021,43(1):49-57.
[14] Yoshihiro Kanno. Accelerated proximal gradient method for bi-modulus static elasticity[J]. Optimization and Engineering, 2021: 1-25.
[15] Rohanifar Milad and Hatami Marbini Hamed. Numerical modelling of mechanical properties of 2D cellular solids with bi-modulus cell walls[J]. Mechanics of Advanced Materials and Structures, 2021, 28(3): 321-329.
[16] Jiang Lanxin et al. Bimodulus constitutive relation and mesoscopic model of braided composites[J]. Composite Structures, 2021, 270
[17] Ruoqiang F, Jihong Y, Yue W, et al. Mechanical behavior of glass panels supported by clamping joints in cable net facades[J]. International Journal of Steel Structures, 2012, 12(1): 15−24.
[18] Gang S, Yongzhi Z, Xiaohao S, et al. Influence of damages on static behavior of single-layer cable net supported glass curtain wall: full-scale model test [J]. Frontiers of Architecture and Civil Engineering in China, 2010, 4(3): 383−395.
[19] Ekaterina Gerasimova; Alexander Galyamichev; Gregor Schwind; Jens Schneider. Deflection of a cladding panel of fully tempered glass in curtain wall system[J]. Magazine of Civil Engineering,2021,Vol.104(4): 10403
[20] Respondek, Zbigniew; Kozłowski, Marcin; Wiśniowski, Maciej. Deflections and Stresses in Rectangular, Circular and Elliptical Insulating Glass Units.[J]. Materials,2022,Vol.15(7): 2427
[21] Beason, W.Lynn (1986). StructuralAnalysis of sealed lnsula-ting Glass.Journal of Structural Engineering, 112(5), 1133-1146
[22] 彭震,陆海翔 ,杨志安 . Winkler地基梁在温度场中受简谐激励作用下的主共振和主参数共振分析[J].机械强度,2007,(4): 695-698
Peng Zhen, Lu Haixiang, Yang Zhian. Analysis on primary resonant and primary parametric resonant of harmonically driven on winkler foundation in temperature field[J]. Journal of Mechanical Strength, 2007, (4): 695-698
[23] 杨志安,李文兰.Winkler地基上四边自由矩形薄板的亚谐共振与奇异性分析[J].机械强度,2007,(2): 329-333
Yang Zhian, Li Chunlan.Subharmonic resonance of rectangular thin plate with four sides free on winkler foundation and its singularity analysis[J]. Journal of Mechanical Strength, 2007, (2): 329-333
[24] 杨志安,赵雪娟.非线性弹性地基上矩形薄板受双频参数激励作用的非线性振动[J].应用力学学报,2007,(3): 494-494
Yang Zhian, Zhao Xuejuan. Nonlinear vibration of rectangular thin plate excited by dual-frequency parameters on nonlinear elastic foundation[J]. Chinese Journal of Applied Mechanics, 2007, (3): 494-494
[25] 杨志安,李志永.非线性弹性地基上受简谐激励矩形薄板的主共振[A].第七届全国非线性动力学学术会议暨第十届全国非线性振动学术会议[C],2004
Yang Zhian, Li Zhiyong. Main resonance of rectangular thin plate excited by harmonic excitation on nonlinear elastic foundation[A]. Seventh National Conference on Nonlinear Dynamics and Tenth National Conference on Nonlinear Vibration[C],2004
[26] 高永毅,唐果,万文.非线性弹性地基上矩形薄板的动力学研究[J].振动与冲击,2013,第32卷(16): 182-186
Gao Yongyi, Tang Guo, Wang Zhang. Dynamics of thin rectangular plate on nonlinear elastic foundation[J]. Journal of Vibration and Shock, 2013, Vol.32(16): 182-186
[27] 解梦雪,胡宇达.双线载作用轴向运动薄板的主-内联合共振[J].机械强度,2022,第44卷(2): 255-262
Xie Mengxue, Hu Yuda. Principal-internal resonance of an axially moving thin plate subjected to double line loads[J]. Journal of Mechanical Strength,2022, Vol.44(2): 255-262
[28] 张小广,胡宇达,任兴利.四边固支功能梯度矩形板的主共振分析[J].振动与冲击,2011,30(06):153-157.
Zhang Xiaoguang, Hu Yuda, Ren Xingli. Nonlinear principal resonance of clamped funtionally graded rectangular plate[J]. Journal of Vibration and Shock,2011,30(06):153-157.
[29] 邱平,王新志,叶开沅.非线性弹性地基上的圆薄板的分岔与混沌问题[J].应用数学和力学,2003(08):779-784.
Qiu Ping, Wang Xinzhi, Ye Kaiyuan. Bifurcation and chaos of circular thin plate on nonlinear elastic foundation[J]. Applied Mathematics and Mechanics,2003(08):779-784.
[30] 宋锦威.应用广义位移原理求解大挠度矩形板弯曲问题[D].燕山大学,2017.
Song Jinwei. Application of generalized displacement principle to solve the bending problem of rectangular plates with large deflection [D]. Yanshan University, 2017

PDF(1335 KB)

Accesses

Citation

Detail

段落导航
相关文章

/