基于多缩放基调频变换的时频脊线精细化表征方法

丁嘉凯1,2,王义1,2,穆志国3,张光耀1,2,李城1, 2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 22-29.

PDF(2303 KB)
PDF(2303 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 22-29.
论文

基于多缩放基调频变换的时频脊线精细化表征方法

  • 丁嘉凯1,2,王义1,2,穆志国3,张光耀1,2,李城1, 2
作者信息 +

A refined characterization method for time-frequency ridgelines based on multi-scale basis CT

  • DING Jiakai1,2, WANG Yi1,2, MU Zhiguo3, ZHANG Guangyao1,2, LI Cheng1,2
Author information +
文章历史 +

摘要

旋转机械在变工况下因局部故障和时变转速等激励影响下会产生非平稳振动信号,传统时频分析方法无法满足快时变与强调频的非平稳瞬态振动信号分析要求,由于传统调频变换(CT)在分析非平稳振动信号时其核函数无法跟随瞬时频率(IF)轨迹变化而变化,导致振动信号IF轨迹时频表征无法达到精细化程度。针对此类问题本文提出了一种多缩放基调频变换(MSBCT)时频分析方法,理论分析表明该方法可利用高阶相位算子将MSBCT方法核函数精确逼近IF轨迹,使得MSBCT算法可针对变转速工况下的IF轨迹得到精确的时频表征。由于噪声信号在时频域内的IF轨迹呈现出随机分布的特性,MSBCT方法由于高阶相位算子的存在可精确捕捉IF变化规律,故MSBCT可在一定程度上对噪声有抑制作用。本文通过仿真信号与变转速工况下轴承故障信号验证了所提出的MSBCT算法的有效性。结果表明,MSBCT算法能够非线性IF轨迹进行精细化表征,并通过与其他时频表征方法验证了其优势性。

Abstract

Rotating machinery will generate non-stationary vibration signals under the influence of local faults and time-varying speed under variable working conditions. The traditional time-frequency analysis method cannot meet the requirements of non-stationary transient vibration signal analysis with fast time-varying and emphasis frequency under variable working conditions. Because the kernel function of traditional chirp transform (CT) cannot follow the change of instantaneous frequency (IF) trajectory when analyzing non-stationary vibration signal, the time-frequency representation (TFR) of IF trajectory of vibration signal cannot reach the degree of refinement. A multi-scale basis Chirplet transform (MSBCT) method is proposed to solve aforementioned problems in this paper, which utilizes high-order phase operator to approximate the IF trajectory accurately, so that the MSBCT algorithm can obtain accurate TFR for the IF trajectory under variable speed conditions. Due to the random distribution of the IF trajectory of the noise signal in the time-frequency domain, MSBCT method can accurately capture the IF variation rule due to the existence of higher-order phase operator, so MSBCT can suppress the noise to a certain extent. Simulation and experimental results show that the MSBCT algorithm can perform fine representation of nonlinear IF trajectory, and its superiority is verified by comparing with other TFR algorithms.

关键词

变速工况 / 非平稳信号 / 瞬时频率轨迹 / 多缩放基调频变换 / 精细化时频表征

Key words

time-varying conditions / non-stationary signal / instantaneous frequency trajectory / multi-scale basis Chirplet transform / refined time-frequency representation

引用本文

导出引用
丁嘉凯1,2,王义1,2,穆志国3,张光耀1,2,李城1, 2. 基于多缩放基调频变换的时频脊线精细化表征方法[J]. 振动与冲击, 2023, 42(19): 22-29
DING Jiakai1,2, WANG Yi1,2, MU Zhiguo3, ZHANG Guangyao1,2, LI Cheng1,2. A refined characterization method for time-frequency ridgelines based on multi-scale basis CT[J]. Journal of Vibration and Shock, 2023, 42(19): 22-29

参考文献

[1] MING A, ZHANG W, QIN Z, CHU F. Fault feature extraction and enhancement of rolling element bearing in varying speed condition, Mechanical Systems and Signal Processing, 76 (2016) 367-379.
[2] 唐贵基, 王晓龙, 变分模态分解方法及其在滚动轴承早期故障诊断中的应用, 振动工程学报, 29 (2016) 638-648.
TANG Guiji, WANG Xiaolong. Variational mode decomposition method and its application on incipient fault diagnosis of rolling bearing [J]. Journal of Vibration Engineering, 2016, 29(4): 638-648.
[3] 雷亚国, 何正嘉, 林京, 韩冬, 孔德同, 行星齿轮箱故障诊断技术的研究进展, 机械工程学报, 47 (2011) 59-67.
LEI Yaguo, HE Zhengjia, LIN Jing, HAN Dong, KONG Detong. Research advances of fault diagnosis technique for planetary gearboxes [J]. Journal of Mechanical Engineering, 2011, 47(19): 59-67.
[4] LEI Yaguo, LIN Jing, ZUO M J, HE Zhengjia. Condition monitoring and fault diagnosis of planetary gearboxes: A review, Measurement, 48 (2014) 292-305.
[5] 陈是扦,彭志科,周鹏.信号分解及其在机械故障诊断中的应用研究综述[J].机械工程学报,2020,56(17):91-107.
CHEN Shiqian, PENG Zhike, ZHOU Peng. Review of signal decomposition theory and its applications in machine fault diagnosis [J]. Journal of Mechanical Engineering, 2020, 56(17): 91-107.
[6] WANG Lu, XIANG Jiawei, LIU Yi. A time–frequency-based maximum correlated kurtosis deconvolution approach for detecting bearing faults under variable speed conditions, Measurement science and technology, 30 (2019) 125005.
[7] ABBOUD D, MARNISSI Y, ELBADAOUI M. Optimal filtering of angle-time cyclostationary signals: Application to vibrations recorded under nonstationary regimes, Mechanical Systems and Signal Processing, 145 (2020) 106919.
[8] FENG Zhipeng, CHEN Xiaowang. Adaptive iterative generalized demodulation for nonstationary complex signal analysis: Principle and application in rotating machinery fault diagnosis, Mechanical Systems and Signal Processing, 110 (2018) 1-27.
[9] 黄传金, 陈宏, 雷文平,等. 基于MSST的旋转机械故障诊断研究[J]. 振动与冲击, 2019, 38(8):9.
HUANG Chuanjin, CHEN Hong, LEI Wenping, et al. Research on fault diagnosis of rotating machinery based on MSST [J]. Journal of Vibration and Shock, 2019, 38(8):9.
[10] URRESTY J C, RIBA J R, ROMERAL L. Diagnosis of interturn faults in PMSMs operating under nonstationary conditions by applying order tracking filtering, IEEE Transactions on Power Electronics, 28 (2012) 507-515.
[11] WANG Yi, XU Guanghua, LUO Ailing, LIANG Lin, JIANG Kuosheng. An online tacholess order tracking technique based on generalized demodulation for rolling bearing fault detection, Journal of sound and vibration, 367 (2016) 233-249.
[12] YANG Yang, ZHANG Wenming, PENG Zhike, et al. Multicomponent signal analysis based on polynomial chirplet transform, IEEE transactions on Industrial Electronics, 60 (2012) 3948-3956.
[13] 袁平平, 程雪莉, 王航航,等. 基于改进多重同步挤压广义S变换的结构瞬时频率识别研究[J]. 振动与冲击, 2022(041-008).
YUAN Pingping, CHENG Xueli, WANG Hanghang, et al. A study on structural instantaneous frequency identification based on an improved multi-synchrosqueezing generalized S-transform [J]. Journal of Vibration and Shock, 2022(041-008).
[14] HOU Bingchang, WANG Yi, TANG Baoping, et al. A tacholess order tracking method for wind turbine planetary gearbox fault detection, Measurement, 138 (2019) 266-277.
[15] WANG Yi, PETER W T, TANG Baoping, et al. Order spectrogram visualization for rolling bearing fault detection under speed variation conditions, Mechanical Systems and Signal Processing, 122 (2019) 580-596.
[16] WANG Yi, XU Guanghua, ZHANG Qing, et al. Rotating speed isolation and its application to rolling element bearing fault diagnosis under large speed variation conditions, Journal of Sound and Vibration, 348 (2015) 381-396.
[17] SAAVEDRA P, RODRIGUEZ C. Accurate assessment of computed order tracking, Shock and Vibration, 13 (2006) 13-32.
[18] CHENG Weidong, GAO Robert X, WANG Jingjing, et al. Envelope deformation in computed order tracking and error in order analysis, Mechanical Systems and Signal Processing, 48 (2014) 92-102.
[19] YANG Yang, PENG Zhike, ZHANG Wenming, et al. Parameterised time-frequency analysis methods and their engineering applications: A review of recent advances, Mechanical Systems and Signal Processing, 119 (2019) 182-221.
[20] KIYMIK M K, GÜLER İ, DIZIBÜYÜK A, et al. Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application, Computers in biology and medicine, 35 (2005) 603-616.
[21] MARTIN W, FLANDRIN P. Wigner-Ville spectral analysis of nonstationary processes, IEEE Transactions on Acoustics, Speech, and Signal Processing, 33 (1985) 1461-1470.
[22] COHEN L. Time-frequency distributions-a review, Proceedings of the IEEE, 77 (1989) 941-981.
[23] HUANG N E, WU Zhaohua. A review on Hilbert‐Huang transform: Method and its applications to geophysical studies, Reviews of geophysics, 46 (2008).
[24] MANN S, HAYKIN S. The chirplet transform: Physical considerations, IEEE Transactions on Signal Processing, 43 (1995) 2745-2761.
[25] PENG Zhike, MENG Guang, CHU Fulei, et al. Polynomial chirplet transform with application to instantaneous frequency estimation, IEEE Transactions on Instrumentation and Measurement, 60 (2011) 3222-3229.
[26] YU Gang, ZHOU Yiqi. General linear chirplet transform, Mechanical Systems and Signal Processing, 70 (2016) 958-973.
[27] IATSENKO D, MCCLINTOCK P V, STEFANOVSKA A. Extraction of instantaneous frequencies from ridges in time–frequency representations of signals, Signal Processing, 125 (2016) 290-303.
[28] BOASHASH B, BLACK P. An efficient real-time implementation of the Wigner-Ville distribution, IEEE transactions on acoustics, speech, and signal processing, 35 (1987) 1611-1618.
[29] LI Miaofen, WANG Tianyang, CHU Fulei, et al. Scaling-basis chirplet transform, IEEE Transactions on Industrial Electronics, 68 (2020) 8777-8788.
[30] HUANG Huan, BADDOUR N, LIANG Ming. Bearing fault diagnosis under unknown time-varying rotational speed conditions via multiple time-frequency curve extraction, Journal of Sound and Vibration, 414 (2018) 43-60.
[31] HUANG Huan, BADDOUR N. Bearing vibration data collected under time-varying rotational speed conditions, Data in brief, 21 (2018) 1745-1749.

PDF(2303 KB)

Accesses

Citation

Detail

段落导航
相关文章

/