基于主动吸气控制的双幅钢箱梁涡激振动数值模拟研究

董国朝1,曾梦竹1,韩艳1,许育升1,吴肖波2,罗楚钰3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 221-230.

PDF(4712 KB)
PDF(4712 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 221-230.
论文

基于主动吸气控制的双幅钢箱梁涡激振动数值模拟研究

  • 董国朝1,曾梦竹1,韩艳1,许育升1,吴肖波2,罗楚钰3
作者信息 +

Numerical simulation of VIV of double-steel box girder based on active suction control

  • DONG Guochao1, ZENG Mengzhu1, HAN Yan1, XU Yusheng1, WU Xiaobo2, LUO Chuyu3
Author information +
文章历史 +

摘要

为提高双幅钢箱梁涡激振动性能,以某三跨钢箱连续梁桥为研究背景,提出了基于主动吸气控制的双幅钢箱梁涡激振动抑制措施。采用计算流体动力学方法研究了主动吸气控制措施对双幅钢箱梁涡激振动的抑制效果。结合Fluent用户自定义函数(UDF)和“动网格”技术,计算了双幅钢箱梁的涡激振动响应。通过对比风洞试验和数值模拟计算结果,验证了数值模拟方法的可靠性。从能量输入机制、流场等角度分析了主动吸气控制措施的抑振机理。研究结果表明:主动吸气控制措施能有效抑制双幅钢箱梁的涡激振动。吸气源的布置及吸气气流速率的大小均会影响对涡激振动的控制效果。吸气气流与回流相互作用,从而有效地抑制了桥梁的涡激振动。

Abstract

In order to improve the vortex-induced vibration (VIV) performance of double steel box girder, a novel VIV suppression method based on active suction flow control was proposed for a three-span continuous steel box girder bridge. The VIV suppression effect of active suction flow control on double steel box girder is studied by using computational fluid dynamics (CFD) method. The VIV response of double steel box girder was calculated by combining User Defined Functions (UDF) of Fluent and "dynamic grid" technology. The reliability of the numerical simulation method was verified by comparing the wind tunnel test results with the numerical simulation results. The vibration suppression mechanism of the active suction flow control was analyzed from the perspectives of energy input mechanism and flow field. The results show that active suction flow control can effectively suppress VIV of double steel box girder. The arrangement of suction slits and the suction rate can affect the effect of VIV suppression. The VIV of the bridge is effectively suppressed by the interaction between the suction flow and the reflux flow.

关键词

双幅钢箱梁 / 涡激振动 / 主动吸气控制 / 数值模拟 / 能量输入机制

Key words

double steel box girder / vortex-induced vibration (VIV) / active suction flow control / numerical simulation / energy input mechanism

引用本文

导出引用
董国朝1,曾梦竹1,韩艳1,许育升1,吴肖波2,罗楚钰3. 基于主动吸气控制的双幅钢箱梁涡激振动数值模拟研究[J]. 振动与冲击, 2023, 42(19): 221-230
DONG Guochao1, ZENG Mengzhu1, HAN Yan1, XU Yusheng1, WU Xiaobo2, LUO Chuyu3. Numerical simulation of VIV of double-steel box girder based on active suction control[J]. Journal of Vibration and Shock, 2023, 42(19): 221-230

参考文献

[1] 刘小兵,李少杰,杨  群,等. 气动干扰对分离双扁平箱梁三分力系数的影响[J]. 桥梁建设,2017, 47(05): 53-58.
LIU Xiao-bing, LI Shao-jie, YANG Qun, et al. Influences of aerodynamic interference on three-component coefficients of separated twin flat box girders[J]. Bridge Construction, 2017, 47(05): 53-58.
[2] Park Jin, Kim Sunjoong, Kim Ho-kyung. Effect of gap distance on vortex-induced vibration in two parallel cable-stayed bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 162: 35-44.
[3] Larsena A, Svensson E, Andersen H. Design aspects of tuned mass dampers for the Great Belt East Bridge approach spans[J]. Journal of wind engineering and industrial aerodynamics, 1995, 54-55: 413-426.
[4] Andersen L, Birch Nw, Hansen Ah, et al. Response analysis of tuned mass dampers to structures exposed to vortex loading of Simiu-Scanlan Type[J]. Journal of Sound and Vibration, 2001, 239(2): 217-231.
[5] Ronaldo Cbattista, Michèle Spfeil. Reduction of vortex-induced oscillations of Rio–Niterói bridge by dynamic control devices[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2000, 84(3): 273-288.
[6] 张洪福. 基于展向风场扰动的大跨桥梁单箱梁主梁风效应流动控制[D]. 哈尔滨: 哈尔滨工业大学,2018.
ZHANG Hong-fu. Flow Control on Wind-induced Effects of Long-span Single-box Girders Based on Spanwise Perturbation of Wind Field[D]. Harbin: Harbin Institute of Technology, 2018.
[7] 杨詠昕,周  锐,罗东伟,等. 不同槽宽分体箱梁桥梁的涡振及其控制措施[J]. 工程力学,2017, 34(07): 30-40.
YANG Yong-xin, ZHOU Rui, LUO Dong-wei, et al. Vortex-induced vibration and its control for twin box girder bridges with various slot widths[J]. ENGINEERING MECHANICS, 2017, 34(07): 30-40.
[8] 张天翼,孙延国,李明水,等. 宽幅双箱叠合梁涡振性能及抑振措施试验研究[J]. 中国公路学报,2019, 32(10): 107-114.
ZHANG Tian-yi, ZHANG Yan-guo, LI Ming-shui, et al. Experimental Study on Vortex-induced Vibration Performance and Aerodynamic Countermeasures for a Wide-width Double box Composite Beam[J]. China J. Highw. Transp., 2019, 32(10): 107-114.
[9] 李春光,张  佳,韩  艳,等. 栏杆基石对闭口箱梁桥梁涡振性能影响的机理[J]. 中国公路学报,2019, 32(10): 150-157.
LI Chun-guang, ZHANG Jia, HAN Yan, et al. Mechanism of the influence of railing cornerstone on vortex-induced vibration of closed box girder bridge[J]. China J. Highw. Transp., 2019, 32(10): 150-157.
[10] 汪志雄,张志田,郄  凯,等. π型开口截面斜拉桥弯扭耦合涡激共振及气动减振措施研究[J]. 振动与冲击,2021, 40(01): 52-57.
WANG Zhi-xiong, ZHANG Zhi-tian, QIE Kai, et al. Bending-torsion coupled vortex induced resonance of π-type open section cable stayed bridge and aerodynamic vibration reduction measures[J]. Journal of vibration and shock, 2021, 40(01): 52-57.
[11] 李春光,黄静文,张  记,等. 边主梁叠合梁涡振性能气动优化措施风洞试验研究[J]. 振动与冲击,2018, 37(17): 86-92.
LI Chun-guang, HUANG Jing-wen, ZHANG Ji, et al. Aerodynamic optimization measures for VIV performances of a side girder composite beam based on wind tunnel tests[J]. Journal of vibration and shock, 2018, 37(17): 86-92.
[12] 李永乐,陈科宇,汪  斌,等. 钝体分离式双箱梁涡振优化措施研究[J]. 振动与冲击,2018, 37(07): 116-122.
LI Yong-le, CHEN Ke-yu, WANG Bin, et al. Optimal measures for vortex-induced vibration of a bluff girder with separated twin-box[J]. Journal of vibration and shock, 2018, 37(07): 116-122.
[13] Chen Wen-li, Yang Wen-han, Li Hui. Self-issuing jets for suppression of vortex-induced vibration of a single box girder[J]. Journal of Fluids and Structures, 2019, 86: 213-235.
[14] Zhang Liang-quan, Chen Guan-bin, Chen Wen-li, et al. Separation Control on a Bridge Box Girder Using a Bypass Passive Jet Flow[J]. Applied Sciences, 2017, 7(6): 501.
[15] Yang Wen-han, Chen Wen-li, Li Hui. Suppression of vortex-induced vibration of single-box girder with various angles of attack by self-issuing jet method[J]. Journal of Fluids and Structures, 2020, 96: 103017.
[16] Kim Jinsung, Choi Haecheon. Distributed forcing of flow over a circular cylinder[J]. Physics of Fluids, 2005, 17(3): 33103.
[17] Chen Wen-li, Li Hui, Hu Hui. An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder[J]. Experiments in Fluids, 2014, 55(4): 1707.
[18] 董国朝,许育升,韩  艳,等. 双幅连续梁桥钢箱梁涡激振动机理分析[J]. 振动与冲击,2022, 41(9): 237-243.
DONG Guochao, XU Yusheng, HAN Yan, et al. VIV mechanism analysis of steel box girder of double continuous girder bridge[J]. Journal of vibration and shock, 2022, 41(9): 237-243.
[19] 刘小兵. 大跨度双幅桥面桥梁气动干扰研究[D]. 长沙: 湖南大学,2011.
LIU Xiao-bing. Stuty on aerodynamic interferences of Long-Span bridges with twin separate parallel decks[D]. Changsha: Hunan University, 2011.
[20] 刘志文,周  帅,陈政清. 宽高比为4的矩形断面涡激振动响应数值模拟[J]. 振动与冲击,2011, 30(11): 153-156.
LIU Zhi-wen, ZHOU Shuai, CHEN Zheng-qing. Numerical simulation of vortex induced vibration of rectangular cylinder with aspect ratio 4[J]. Journal of vibration and shock, 2011, 30(11): 153-156.
[21] 辛大波,欧进萍,李  惠,等. 基于定常吸气方式的大跨桥梁风致颤振抑制方法[J]. 吉林大学学报(工学版),2011, 41(05): 1273-1278.
[22] 陈文礼,郭艳娇. 基于主动吸吹气的圆柱绕流控制[J]. 空气动力学学报,2020, 38(05): 989-995.
CHEN Wen-li, GUO Yan-jiao. Flow control of circular cylinder based on active suction and blow[J]. ACTA AERODYNAMICA SINICA, 2020, 38(05): 989-995.
[23] 刘小兵,陈政清,刘志文. 桥梁断面颤振稳定性的直接计算法[J]. 振动与冲击,2013, 32(01): 78-82.
LIU Xiao-bing, CHEN Zheng-qing, LIU Zhi-wen. Direct computation method for flutter stability of a bridge deck[J]. Journal of vibration and shock, 2013, 32(01): 78-82.
[24] 杜远征. 三维圆柱绕流及涡激振动的数值模拟[D]. 天津: 天津大学,2012.
DU Yuan-zheng. Three-Dimensional numerical simulation of flow around a circular cylinder and vortex-induced vibration[D]. Tianjin: Tianjin University, 2012.
[25] 王林凯,刘志文. 基于OpenFOAM的矩形断面涡激振动数值模拟[J]. 公路交通科技,2017, 34(10): 57-66.
WANG Lin-kai, LIU Zhi-wen. Numerical simulation of vortex-induced vibration of rectangular cross-section based on OpenFOAM[J]. Journal of Highway and Transportation Research and Development, 2017, 34(10): 57-66.
 

PDF(4712 KB)

Accesses

Citation

Detail

段落导航
相关文章

/