多孔固沙砖机械沙障防风固沙效果的风洞试验研究

孙婧1,2,王君1,王海龙1,3,洪俊哲1,张少云1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 266-274.

PDF(3413 KB)
PDF(3413 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (19) : 266-274.
论文

多孔固沙砖机械沙障防风固沙效果的风洞试验研究

  • 孙婧1,2,王君1,王海龙1,3,洪俊哲1,张少云1
作者信息 +

Wind tunnel test study on windbreak and sand fixing effect of porous sand fixing brick grid mechanical sand barrier

  • SUN Jing1,2, WANG Jun1, WANG Hailong1,3, HONG Junzhe1, ZHANG Shaoyun1
Author information +
文章历史 +

摘要

针对鱼卡至一里坪线新建地方铁路工程,设计了一种多孔固沙砖方格机械沙障作为本线的风沙防护措施。基于风洞试验,通过净风下0°~90°不同铺设角度的沙障风压分布及其变化特点研究,得到最优铺设角度工况;进而在风沙条件下分析了最优工况时沙障的防风固沙效果。结果表明:净风条件下,多孔固沙砖沙障所受风压呈对称分布,沙障边缘处平均风压系数波动较中部位置处大;且沙障所受风压对铺设角度变化敏感,0°~15°铺设角度内,多孔固沙砖沙障平均风压系数稳定,受压较小,是最优铺设角度范围;风沙条件下,在最优铺设角度0°时,障后风速衰减明显,沙粒主要被阻拦在第1排固沙砖前,而穿过孔洞和翻越的沙粒依次沉降在不同排数的方格内;第1排固沙砖后方格内平均沙粒沉积率为116.75 g/(m2•s),占方格总积沙量的88%,固沙效果最明显。

Abstract

As a wind and sand protection measure, a porous sand-fixing brick square mechanical sand barrier was designed as part of the newly constructed local railroad project, Yuca-Yiliping. Based on the wind tunnel test, through the study on the wind pressure distribution and its variation characteristics of sand barrier at different laying angles from 0° to 90° under pure wind, the optimal laying angle working condition was obtained. Furthermore, under the condition of wind-sand, the wind and sand fixation effect of the sand barrier under the optimal working conditions was analyzed.The results show that the wind pressure on the sand barrier is symmetrically distributed under pure wind conditions, and the average wind pressure coefficient at the edge of the sand barrier fluctuates more than that at the middle position; the wind pressure on the sand barrier is sensitive to the change of laying angle, and the average wind pressure coefficient on the sand barrier is stable and less pressurized from 0° to 15° laying angle , It is the optimal range of laying angles; under the wind-sand conditions, when the optimal laying angle is 0 °,the wind speed behind the barrier attenuates obviously ;the sand grains are mainly deposited in front of the 1st row of sand-fixing bricks, while the sand grains passing through the holes and overturning settle in different rows of squares in turn; the average sand deposition rate in the squares after the 1st row of sand-fixing bricks is 116.75 g/(m2 s), accounting for 88% of the total sand accumulation in the squares, with sand fixing being the most obvious effect.

关键词

多孔固沙砖机械沙障 / 风洞试验 / 铺设角度 / 平均风压系数 / 沙粒沉积率

Key words

mechanical sand barrier of porous sand-fixing brick / wind tunnel test / laying angle / average wind pressure coefficient / sand deposition rate

引用本文

导出引用
孙婧1,2,王君1,王海龙1,3,洪俊哲1,张少云1. 多孔固沙砖机械沙障防风固沙效果的风洞试验研究[J]. 振动与冲击, 2023, 42(19): 266-274
SUN Jing1,2, WANG Jun1, WANG Hailong1,3, HONG Junzhe1, ZHANG Shaoyun1. Wind tunnel test study on windbreak and sand fixing effect of porous sand fixing brick grid mechanical sand barrier[J]. Journal of Vibration and Shock, 2023, 42(19): 266-274

参考文献

[1] 刘世增,徐先英,詹科杰. 风沙物理学进展及其在沙漠化防治中的应用[J]. 科技导报, 2017, 35(03): 29-36.
LIU Shizeng, XU Xianying, ZHAN Kejie. Progress of
Aeolian Sand Physics and its Application in Desertification Control[J]. Science and technology guide, 2017, 35(03): 29-36.
[2] 李生宇,雷加强,徐新文,等. 中国交通干线风沙危害防治模式及应用[J]. 中国科学院院刊, 2020, 35(06): 665-674.
LI Shengyu, LEI Jian, XU Xinwen, et al. Prevention an-d Control Model and Application of Wind and Sand ha-zards on Traffic Trunk Lines in China[J]. Journal of th-e Chinese Academy of Sciences, 2020, 35(06): 665-674.
[3] 屈建军,洪贤良,李芳,等. 聚乳酸(PLA)网格沙障耐老化性能及防沙效果[J]. 中国沙漠, 2021, 41(02): 51-58. 
QU Jianjun, HONG Xianliang, LI Fang, et al. Antiaging performance and sand control effect of polylactic acid (PLA) mesh sand barrier[J]. Chinese desert, 2021, 41(02): 51-58.
[4] ROSENBRAND E, VAN BEEK V, BEZUIJEN A, et al.Multi-scale experiments for a coarse sand barrier against backward erosion piping[J]. Géotechnique, 2022, 72(3): 216-226.
[5] AKRAMI S, BEZUIJEN A, VAN BEEK V, et al. Anal-ysis of development and depth of backward erosion pip-es in the presence of a coarse sand barrier[J]. Acta Geo-technica, 2021, 16(2): 381-397.
[6] Wang Z , Pan X, Yuan L, et al. Variation in grain-size characteristics of simulated shrubs as a novel sand barri-er in a wind tunnel experiment.[J]. Science Progress, 2021, 104(2): 1-19.
[7] WANG T, QU J, LING Y, et al. Shelter effect efficacy of sand fences: A comparison of systems in a wind tun-nel[J]. Aeolian Research, 2018, 30: 32-40.
[8] 沈国辉,韩康辉,卢坚,等. 蝶形防风网的体型系数和角度风分配系数[J]. 振动与冲击, 2022, 41(14): 99-104+144.
SHEN Guohui, HAN Kanghui, LU Jian, et al. Shape co-efficient and angle wind distribution coefficient of butter-fly windbreak net[J]. Vibration and shock, 2022, 41(14): 99-104+144.
[9] BAOYING N, JIANXIA M, ZHIDE J, et al. Evolution
characteristics and development trends of sand barriers[J]. Journal of Resources and Ecology, 2017, 8(4): 398-404.
[10] 孙浩,刘晋浩,黄青青,等. 多边形草沙障防风效果研究[J]. 北京林业大学学报, 2017, 39(10): 90-94.
SUN Hao, LIU Jinhao, HUANG Qingqing, et al. Study on the windbreak effect of polygonal grass sand barrier[J]. Journal of Beijing Forestry University, 2017, 39(10): 90-94.
[11] 高天笑,王涛,杨文斌,等. 低覆盖度羽翼袋沙障防风积沙效应的风洞试验[J]. 中国沙漠, 2019, 39(06): 177-183.
GAO Tianxiao, Wang Tao, Yang Wenbin, et al. Wind t-unnel test on the effect of wing bag sand barrier with  low coverage on preventing wind and sand accumulation[J]. Chinese desert, 2019, 39(06): 177-183.
[12] VIVEK P, SITHARAM T G . Shock wave attenuation
by geotextile encapsulated sand barrier systems-Science Direct[J]. Geotextiles and Geomembranes, 2017, 45(3): 149-160.
[13] WANG T, Qu J, NIU Q. Comparative study of the shel-ter efficacy of straw checkerboard barriers and rocky ch-eckerboard barriers in a wind tunnel[J]. Aeolian Research, 2020, 43: 100575.
[14] 吴溢文,陈永,郑福斌,等. 多孔化学固沙砖的制备[J]. 科学技术与工程, 2009, 9(07): 1965-1969.
WU Yiwen, CHEN Yong, ZHENG Fubin, et al. Preparation of porous chemical sand-fixing bricks[J]. Science T-echnology and Engineering, 2009, 9(07): 1965-1969.
[15] 王海龙,刘畅,孙婧,等. 沙漠铁路固沙砖设计参数的数值模拟[J]. 铁道标准设计, 2018, 62(11): 59~64.
WANG Hailong, LIU Chang, SUN Jing, et al. Numerical simulation of design parameters of sand-fixing bricks in desert railway[J]. Standard design of railway, 2018, 62(11): 59~64.
[16] HUANG B, Li Z, ZHANG Z, et al. Study on Flow Fie-ld Characteristics in Sandstorm Conditions Using Wind
Tunnel Test[J]. Atmosphere, 2022, 13(3): 446.
[17] HUANG B, Li Z, ZHAO Z, et al. Near-ground impurity-free wind and wind-driven sand of photovoltaic power s-tations in a desert area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 483-502.
[18] 杨具瑞,方铎,毕慈芬,等. 非均匀风沙起动规律研究[J]. 中国沙漠, 2004(02): 136-139.
YANG Yurui, FANG Duo, BI Cifen, et al. Study on thestarting law of non-uniform wind and sand[J]. China D-esert, 2004(02): 136-139.
[19] YANG W, YU M, YAN B, et al. Wind Tunnel Tests of Wake Characteristics for a Scaled Wind Turbine Model Based on Dynamic Similarity[J]. Energies, 2022, 15(17): 6165.
[20] 中华人民共和国住房和城乡建设部. 建筑工程风洞试验方法标准: JGJ/T338-2014[S].北京: 中国建筑工业出版社, 2014.
[21] 刘畅. 防风沙设施力学行为的研究及工程应用[D]. 河北建筑工程学院, 2019.
[22] TOMINAGA Y, OKAZE T, MOCHIDA A. Wind tunnel experiment and CFD analysis of sand erosion/deposition due to wind around an obstacle[J]. Journal of Wind En-gineering and Industrial Aerodynamics, 2018, 182: 262-271.
[23] 陈波,骆盼育,杨庆山. 测压管道系统频响函数及对风效应的影响[J]. 振动与冲击, 2014, 33(03): 130-134.
CHEN Bo, LUO Panyu, YANG Qingshan. Frequency re-sponse function of pressure measuring pipeline system a-nd its influence on wind effect[J]. Vibration and shock, 2014, 33(03): 130-134.
[24] 郝贠洪,刘艳晨,郭健,等. 风沙环境变量相似理论及其应用研究[J]. 应用基础与工程科学学报, 2018, 26(03): 640-649.
HAO Xihong, LIU Yanchen, GUO Jian, et al. Study on similarity Theory of Aeolian Environmental variables and its Application[J]. Journal of Applied basic and Engin-eering Sciences, 2018, 26(03): 640-649.
[25] 孙显科,张学利. 用创新思维破解风沙运动机理——两种理论体系核心的剖析[J]. 地理学报, 2015, 70(01): 73-84.
SUN Xianke, ZHANG Xueli. Using innovative thinking
to crack the mechanism of wind-blown sand movement an analysis of the core of the two theoretical systems[J]. Journal of geography, 2015, 70(01): 73-84.

PDF(3413 KB)

282

Accesses

0

Citation

Detail

段落导航
相关文章

/